1. 程式人生 > >兩圓相交求面積 hdu5120

兩圓相交求面積 hdu5120

-c ace pes eno script inpu common area time

轉載

兩圓相交分如下集中情況:相離、相切、相交、包含。

設兩圓圓心分別是O1和O2,半徑分別是r1和r2,設d為兩圓心距離。又因為兩圓有大有小,我們設較小的圓是O1。

相離相切的面積為零,代碼如下:

[cpp] view plain copy print?
  1. double d = sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
  2. if (d >= r1+r2)
  3. return 0;
double d = sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
if (d >= r1+r2)
	return 0;

包含的面積就是小圓的面積了,代碼如下:

[cpp] view plain copy print?
  1. if(r2 - r1 >= d)
  2. return pi*r1*r1;
if(r2 - r1 >= d)
	return pi*r1*r1;

接下來看看相交的情況。

技術分享

相交面積可以這樣算:扇形O1AB - △O1AB + 扇形O2AB - △O2AB,這兩個三角形組成了一個四邊形,可以用兩倍的△O1AO2求得,

所以答案就是兩個扇形-兩倍的△O1AO2

技術分享

技術分享

因為技術分享

所以技術分享

那麽技術分享

同理

技術分享

技術分享

接下來是四邊形面積:

技術分享

代碼如下:

double ang1=acos((r1*r1+d*d-r2*r2)/(2
*r1*d)); double ang2=acos((r2*r2+d*d-r1*r1)/(2*r2*d)); return ang1*r1*r1 + ang2*r2*r2 - r1*d*sin(ang1);

#include<iostream>
#include<cmath>
using namespace std;

#define pi acos(-1.0)

typedef struct node
{
    int x;
    int y;
}point;

double AREA(point a, double r1, point b, double
r2) { double d = sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y)); if (d >= r1+r2) return 0; if (r1>r2) { double tmp = r1; r1 = r2; r2 = tmp; } if(r2 - r1 >= d) return pi*r1*r1; double ang1=acos((r1*r1+d*d-r2*r2)/(2*r1*d)); double ang2=acos((r2*r2+d*d-r1*r1)/(2*r2*d)); return ang1*r1*r1 + ang2*r2*r2 - r1*d*sin(ang1); } int main() { point a, b; a.x=2, a.y=2; b.x=7, b.y=2; double result = AREA(a, 3, b, 5); printf("%lf\n", result); return 0; }

Intersection

Time Limit: 4000/4000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others)
Total Submission(s): 3443 Accepted Submission(s): 1302


Problem Description Matt is a big fan of logo design. Recently he falls in love with logo made up by rings. The following figures are some famous examples you may know.

技術分享

A ring is a 2-D figure bounded by two circles sharing the common center. The radius for these circles are denoted by r and R (r < R). For more details, refer to the gray part in the illustration below.

技術分享

Matt just designed a new logo consisting of two rings with the same size in the 2-D plane. For his interests, Matt would like to know the area of the intersection of these two rings.

Input The first line contains only one integer T (T ≤ 105), which indicates the number of test cases. For each test case, the first line contains two integers r, R (0 ≤ r < R ≤ 10).

Each of the following two lines contains two integers xi, yi (0 ≤ xi, yi ≤ 20) indicating the coordinates of the center of each ring.

Output For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y is the area of intersection rounded to 6 decimal places.

Sample Input 2 2 3 0 0 0 0 2 3 0 0 5 0

Sample Output Case #1: 15.707963 Case #2: 2.250778
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
double x1,ya,x2,y2,dis,s1,s2,s3,R,r;
double sov(double R,double r){
    if(dis>=r+R) return 0;
    if(dis<=R-r) return acos(-1.0)*r*r;
    double x=(R*R-r*r+dis*dis)/2.0/dis;
    double y=(r*r-R*R+dis*dis)/2.0/dis;
    double seta1=2*acos(x/R);
    double seta2=2*acos(y/r);
    double ans=seta1*R*R/2.0+seta2*r*r/2.0;
    double h=sqrt(R*R-x*x);
    return ans-dis*h;
}
int main(){
   int tas=1,T;
   for(scanf("%d",&T);T--;){
    scanf("%lf%lf",&r,&R);
    scanf("%lf%lf%lf%lf",&x1,&ya,&x2,&y2);
    dis=sqrt((x1-x2)*(x1-x2)+(ya-y2)*(ya-y2));
    s1=sov(R,R),s2=sov(R,r),s3=sov(r,r);
    printf("Case #%d: %.6f\n",tas++,s1-2*s2+s3);
   }
}

兩圓相交求面積 hdu5120