Spark記錄-spark-submit學習
#查看幫助:./bin/spark-submit --help
用法1: spark-submit [options] <app jar | python file> [app arguments]
用法2: spark-submit --kill [submission ID] --master [spark://...]
用法3: spark-submit --status [submission ID] --master [spark://...]
選項:
--master MASTER_URL spark://host:port, mesos://host:port, yarn, or local.
-deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or on one of the worker machines inside the cluster ("cluster") (Default: client).
--class CLASS_NAME Your application‘s main class (for Java / Scala apps).
--name NAME A name of your application.
--jars JARS Comma-separated list of local jars to include on the driver and executor classpaths.
--packages Comma-separated list of maven coordinates of jars to include on the driver and executor classpaths. Will search the local maven repo, then maven central and any additional remote repositories given by --repositories. The format for the coordinates should be groupId:artifactId:version.
--exclude-packages Comma-separated list of groupId:artifactId, to exclude while resolving the dependencies provided in --packages to avoid dependency conflicts.
--repositories Comma-separated list of additional remote repositories to search for the maven coordinates given with --packages.
--py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place on the PYTHONPATH for Python apps.
--files FILES Comma-separated list of files to be placed in the working directory of each executor.
--conf PROP=VALUE Arbitrary Spark configuration property.
--properties-file FILE Path to a file from which to load extra properties. If not specified, this will look for conf/spark-defaults.conf.
--driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
--driver-java-options Extra Java options to pass to the driver.
--driver-library-path Extra library path entries to pass to the driver.
--driver-class-path Extra class path entries to pass to the driver. Note that jars added with --jars are automatically included in the classpath.
--executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G).
--proxy-user NAME User to impersonate when submitting the application.
--help, -h Show this help message and exit
--verbose, -v Print additional debug output
--version, Print the version of current Spark
Spark standalone with cluster deploy mode only: --driver-cores NUM Cores for driver (Default: 1).
Spark standalone or Mesos with cluster deploy mode only:
--supervise If given, restarts the driver on failure.
--kill SUBMISSION_ID If given, kills the driver specified.
--status SUBMISSION_ID If given, requests the status of the driver specified.
Spark standalone and Mesos only: --total-executor-cores NUM Total cores for all executors.
Spark standalone and YARN only: --executor-cores NUM Number of cores per executor. (Default: 1 in YARN mode,or all available cores on the worker in standalone mode)
YARN-only:
--driver-cores NUM Number of cores used by the driver, only in cluster mode (Default: 1).
--queue QUEUE_NAME The YARN queue to submit to (Default: "default").
--num-executors NUM Number of executors to launch (Default: 2).
--archives ARCHIVES Comma separated list of archives to be extracted into the
working directory of each executor.
--principal PRINCIPAL Principal to be used to login to KDC, while running on secure HDFS.
--keytab KEYTAB The full path to the file that contains the keytab for the principal specified above. This keytab will be copied to the node running the Application Master via the Secure Distributed Cache, for renewing the login tickets and the delegation tokens periodically.
./bin/spark-submit --class <main-class> --master <master-url> --deploy-mode <deploy-mode> --conf <key>=<value> ... # other options
<application-jar> [application-arguments]
一些常用的選項是:
--class
:您的應用程序的入口(例如org.apache.spark.examples.SparkPi
)--master
:群集的主要URL(例如spark://23.195.26.187:7077
)--deploy-mode
:是否在工作節點(cluster
)上或本地作為外部客戶端部署驅動程序(client
)(默認值:client
)?--conf
:key = value格式的任意Spark配置屬性。對於包含空格的值,用引號括起“key = value”(如圖所示)。application-jar
:包括您的應用程序和所有依賴項的捆綁jar的路徑。URL必須在群集內全局可見,例如,所有節點上存在的hdfs://
路徑或file://
路徑。application-arguments
:傳遞給主類的主要方法的參數,如果有的話
# Run application locally on 8 cores
./bin/spark-submit --class org.apache.spark.examples.SparkPi --master local[8] /path/to/examples.jar 100
# Run on a Spark standalone cluster in client deploy mode
./bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://207.184.161.138:7077 --executor-memory 20G --total-executor-cores 100 /path/to/examples.jar 1000
# Run on a Spark standalone cluster in cluster deploy mode with supervise
./bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://207.184.161.138:7077 --deploy-mode cluster --supervise --executor-memory 20G --total-executor-cores 100 /path/to/examples.jar 1000
# Run on a YARN cluster
export HADOOP_CONF_DIR=XXX
./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster \ # can be client for client mode
--executor-memory 20G --num-executors 50 /path/to/examples.jar 1000
# Run a Python application on a Spark standalone cluster
./bin/spark-submit --master spark://207.184.161.138:7077 examples/src/main/python/pi.py 1000
# Run on a Mesos cluster in cluster deploy mode with supervise
./bin/spark-submit --class org.apache.spark.examples.SparkPi --master mesos://207.184.161.138:7077 --deploy-mode cluster --supervise --executor-memory 20G --total-executor-cores 100 http://path/to/examples.jar 1000
主URL
傳遞給Spark的主URL可以采用以下格式之一:
主網址 | 含義 |
---|---|
local |
使用一個工作線程在本地運行Spark(即完全沒有並行)。 |
local[K] |
使用K工作線程本地運行Spark(理想情況下,將其設置為機器上的核心數)。 |
local[K,F] |
使用K工作線程和F maxFailures在本地運行Spark(有關此變量的解釋,請參閱spark.task.maxFailures) |
local[*] |
使用與本機邏輯內核一樣多的工作線程在本地運行Spark。 |
local[*,F] |
使用與本機上的邏輯內核和F maxFailures一樣多的工作線程在本地運行Spark。 |
spark://HOST:PORT |
連接到給定的Spark獨立群集主機。該端口必須是主設備配置使用的端口,默認為7077。 |
spark://HOST1:PORT1,HOST2:PORT2 |
使用Zookeeper連接到具有備用主站的給定Spark獨立群集。該列表必須包含使用Zookeeper設置的高可用性群集中的所有主控主機。該端口必須是每個主設備配置使用的,默認為7077。 |
mesos://HOST:PORT |
連接到給定的Mesos群集。端口必須是您配置使用的端口,默認為5050。或者,對於使用ZooKeeper的Mesos集群,請使用mesos://zk://... 。要提交--deploy-mode cluster ,主機:端口應配置為連接到MesosClusterDispatcher。 |
yarn |
連接到YARN群集 client 或cluster 模式取決於的值--deploy-mode 。群集的位置將根據HADOOP_CONF_DIR 或YARN_CONF_DIR 變量找到。 |
./bin/spark-submit --name "My app" --master local[4] --conf spark.eventLog.enabled=false --conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps" myApp.jar
Spark記錄-spark-submit學習