1. 程式人生 > >hdoj1102 Constructing Roads(Prime || Kruskal)

hdoj1102 Constructing Roads(Prime || Kruskal)

oot memset tro map truct get print strong 連接

題目鏈接

http://acm.hdu.edu.cn/showproblem.php?pid=1102

題意

有n個村莊(編號1~n),給出n個村莊之間的距離,開始時n個村莊之間已經有了q條路,現在需要修一條路,這條路連接起所有的村莊,求在已經存在的路徑的基礎上,最少還需要修多長的路。

思路

普通最小生成樹是從零開始構造一棵最小生成樹,而這題開始時圖中已經有了一些路徑,那這些路就不需要被修了,所以將這些路的修理長度置為0,然後使用Prime算法或者Kruskal算法求解即可。

代碼

Prime算法:

 1 #include <algorithm>
 2 #include <cstring>
 3
#include <cstdio> 4 using namespace std; 5 6 const int INF = 0x7fffffff; 7 const int N = 100 + 10; 8 int map[N][N]; 9 int dist[N]; //記錄從起點到其余各點的長度,不斷更新 10 int n, q; 11 12 void prime() 13 { 14 int min_edge, min_node; 15 for (int i = 1; i <= n; i++) 16 dist[i] = INF;
17 int ans = 0; 18 int now = 1; 19 for (int i = 1; i < n;i++) 20 { 21 min_edge = INF; 22 dist[now] = -1; 23 for (int j = 1; j <= n; j++) 24 { 25 if (j != now && dist[j] >= 0) //註意是dist[j]>=0 26 { 27 if
(map[now][j] >= 0) 28 dist[j] = min(dist[j], map[now][j]); 29 if (dist[j] < min_edge) 30 { 31 min_edge = dist[j]; ////min_edge存儲與當前結點相連的最短的邊 32 min_node = j; 33 } 34 } 35 } 36 ans += min_edge; ////ans存儲最小生成樹的長度 37 now = min_node; 38 } 39 printf("%d\n", ans); 40 } 41 42 int main() 43 { 44 //freopen("hdoj1102.txt", "r", stdin); 45 while (scanf("%d", &n) == 1) 46 { 47 memset(map, 0, sizeof(map)); 48 for (int i = 1; i <= n;i++) 49 for (int j = 1; j <= n; j++) 50 scanf("%d", &map[i][j]); 51 scanf("%d", &q); 52 int a, b; 53 for (int i = 0; i < q; i++) 54 { 55 scanf("%d%d", &a, &b); 56 map[a][b] = map[b][a] = 0; 57 } 58 prime(); 59 } 60 return 0; 61 }

Kruskal算法:

 1 #include <algorithm>
 2 #include <cstring>
 3 #include <cstdio>
 4 #include <vector>
 5 using namespace std;
 6 
 7 struct Edge
 8 {
 9     int a, b, dist;
10 
11     Edge() {}
12     Edge(int a, int b, int d) :a(a), b(b), dist(d) {}
13     bool operator < (Edge edge)    //將邊按邊長從短到長排序
14     {
15         return dist < edge.dist;
16     }
17 };
18 
19 const int N = 100 + 10;
20 int p[N];    //並查集使用
21 int map[N][N];
22 vector<Edge> v;
23 int n, q;
24 
25 int find_root(int x)
26 {
27     if (p[x] == -1)
28         return x;
29     else return find_root(p[x]);
30 }
31 
32 void kruskal()
33 {
34     memset(p, -1, sizeof(p));
35     sort(v.begin(), v.end());
36     int ans = 0;
37     for (int i = 0; i < v.size(); i++)
38     {
39         int ra = find_root(v[i].a);
40         int rb = find_root(v[i].b);
41         if (ra != rb)
42         {
43             ans += v[i].dist;
44             p[ra] = rb;
45         }
46     }
47     printf("%d\n", ans);
48 }
49 
50 int main()
51 {
52     //freopen("hdoj1102.txt", "r", stdin);
53     while (scanf("%d", &n) == 1)
54     {
55         v.clear();
56         int t;
57         for (int i = 1; i <= n; i++)
58             for (int j = 1; j <= n; j++)
59                 scanf("%d", &map[i][j]);
60         scanf("%d", &q);
61         int a, b;
62         for (int i = 0; i < q; i++)
63         {
64             scanf("%d%d", &a, &b);
65             map[a][b] = map[b][a] = 0;
66         }
67 
68         for (int i = 1; i <= n; i++)
69             for (int j = 1; j <= n; j++)
70                 if (j > i)    v.push_back(Edge(i, j, map[i][j]));
71 
72         kruskal();
73     }
74     return 0;
75 }

註意點

這題是有多組輸入數據的,如果只按一組輸入數據處理的話會WA.

hdoj1102 Constructing Roads(Prime || Kruskal)