UOJ#55 [WC2014]紫荊花之戀
題目描述
強強和萌萌是一對好朋友。有一天他們在外面閑逛,突然看到前方有一棵紫荊樹。這已經是紫荊花飛舞的季節了,無數的花瓣以肉眼可見的速度從紫荊樹上長了出來。
仔細看看的話,這個大樹實際上是一個帶權樹。每個時刻它會長出一個新的葉子節點,每個節點上有一個可愛的小精靈,新長出的節點上也會同時出現一個新的小精靈。小精靈是很萌但是也很脆弱的生物,每個小精靈 \(i\) 都有一個感受能力值 \(r_i\),小精靈 \(i, j\) 成為朋友當且僅當在樹上 \(i\) 和 \(j\) 的距離 \(\text{dist}(i, j) \leq r_i + r_j\),其中 \(\text{dist}(i, j)\)
強強和萌萌很好奇每次新長出一個葉子節點之後,這個樹上總共有幾對朋友。
我們假定這個樹一開始為空,節點按照加入的順序從 \(1\) 開始編號。由於強強非常好奇,你必須在他每次出現新結點後馬上給出總共的朋友對數,不能拖延哦。
輸入格式
第一行包含一個整數,表示測試點編號。
第二行包含一個正整數 \(n\),表示總共要加入的節點數。
我們令加入節點前的總共朋友對數是 \(\text{last_ans}\),在一開始時它的值為 \(0\)。
接下來 \(n\) 行中第 \(i\) 行有三個非負整數 \(a_i, c_i, r_i\)
註意 \(a_1 = c_1 = 0\),表示 \(1\) 號節點是根結點,對於 \(i > 1\),父節點的編號至少為 \(1\)。
輸出格式
包含 \(n\) 行,每行輸出 \(1\) 個整數,表示加入第 \(i\) 個點之後,樹上有幾對朋友。
樣例一
input
0
5
0 0 6
1 2 4
0 9 4
0 5 5
0 2 4
output
0
1
2
4
7
樣例二
見樣例數據下載。
限制與約定
對於所有數據,滿足 \(1 \leq c_i \leq 10000\),\(a_i \leq 2 \times 10^9\),\(r_i \leq 10^9\),\(n \leq 100000\)
此題 hack 時忽略輸入數據中給定的測試點編號對測試點的限制。
祝大家一遍 AC,求不虐萌萌噠測評機!
時間限制:\(12\texttt{s}\)
空間限制:\(512\texttt{MB}\)
題解
首先,我們發現實際上每次只需要統計新加進的結點有多少合法解。那麽,我們將\(dist(i, j)\)寫成\(dist(i,p)+dist(j,p)\),其中\(p\)是\(i\)和\(j\)的LCA。
那麽,
\[\begin{aligned}dist(i,j)&\leq r_i + r_j\\Leftrightarrow dist(i,p)+dist(j,p)&\leq r_i+r_j\\Leftrightarrow r_i-dist(i,p)&\geq dist(j,p)-r_j\end{aligned}\]
所以,我們枚舉新加的結點的所有祖先\(p\),計算以\(p\)為LCA的滿足條件的點對\((i,j)\)有多少個即可。
計算時,先查詢\(p\)子樹在添加\(i\)之前有多少\(j\)滿足\(r_i-dist(i,p)\geq dist(j,p)-r_j\),再減去其中LCA不是\(p\)的(即,\(i\)和\(j\)在\(p\)的同一棵子樹裏,這樣我們就要查詢在這棵子樹裏有多少\(j\)滿足此條件)。
然而,要高效地維護這個信息,就需要在每個結點上維護一個Treap(記錄所有的\(dist(j,p)-r_j\)),但這樣當樹退化為鏈,單次加入時間復雜度增加為\(O(nlogn)\),空間復雜度增加為\(O(n^2)\)。
於是,借鑒替罪羊樹的思想,我們在某個結點子樹內的點個數大於其父親子樹內點的個數的\(\alpha\in(0,1)\)倍的時候暴力重構其父親的子樹。既然要求重構之後盡量平衡,理所當然地選用點分治。
這樣,上面的分析中所有的“父親”和“祖先”都應理解為點分治樹上的祖先(LCA當然也是),但是答案仍是正確的,因為我們仍然不重不漏地枚舉了所有可能的點。
代碼實現上,還要寫一個倍增LCA以查詢\(dist\),因為點分治之後的祖先不一定是原樹上的祖先,不能直接用\(dep\)相減。
哦,還有,要寫垃圾回收,因為有重構treap,之前的內存必須要重復利用。
代碼
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <stack>
#include <set>
typedef long long LL;
const int N = 100050;
int pre[N], to[N * 2], nxt[N * 2], c[N * 2], cnt = 0;
int r[N];
inline void add_edge(int x, int y, int v) {
nxt[cnt] = pre[x];
c[cnt] = v;
to[pre[x] = cnt++] = y;
nxt[cnt] = pre[y];
c[cnt] = v;
to[pre[y] = cnt++] = x;
}
namespace Tree{
int dep[N], dep2[N], fa[N][17];
void insert(int x, int c, int f) {
add_edge(x, f, c);
dep[x] = dep[fa[x][0] = f] + 1;
dep2[x] = dep2[f] + c;
for (int i = 1; i < 17; ++i)
fa[x][i] = fa[fa[x][i - 1]][i - 1];
}
int LCA(int x, int y) {
if (dep[x] > dep[y]) std::swap(x, y);
for (int i = 16; ~i; --i)
if (dep[fa[y][i]] >= dep[x])
y = fa[y][i];
for (int i = 16; ~i; --i)
if (fa[x][i] != fa[y][i]) {
x = fa[x][i];
y = fa[y][i];
}
return x == y ? x : fa[x][0];
}
int dis(int x, int y) {
int l = LCA(x, y);
return dep2[x] + dep2[y] - 2 * dep2[l];
}
};
struct Treap;
typedef Treap* PTreap;
struct Treap{
static std::stack<PTreap> bin;
PTreap lch, rch;
int val, key, cnt, siz;
void* operator new(size_t, int v) {
Treap *res;
res = bin.top();
bin.pop();
res->val = v; res->key = rand();
res->cnt = 1; res->siz = 1;
res->lch = res->rch = NULL;
return res;
}
void operator delete(void *t) {
bin.push((PTreap)t);
}
void update() {
siz = cnt;
if (lch != NULL) siz += lch->siz;
if (rch != NULL) siz += rch->siz;
}
friend void Zig(PTreap &t) { //右旋
PTreap l = t->lch;
t->lch = l->rch;
l->rch = t;
t->update();
l->update();
t = l;
}
friend void Zag(PTreap &t) { //左旋
Treap *r = t->rch;
t->rch = r->lch;
r->lch = t;
t->update();
r->update();
t = r;
}
friend int query(PTreap o, int x) {
if (o == NULL) return 0;
if (o->val > x) return query(o->lch, x);
else return query(o->rch, x) + (o->lch == NULL ? 0 : o->lch->siz) + o->cnt;
}
friend void insert(PTreap &o, int x) {
if (o == NULL)
o = new (x)Treap;
else if (o->val == x)
++o->cnt;
else if (o->val > x) {
insert(o->lch, x);
if (o->lch->key > o->key)
Zig(o);
} else {
insert(o->rch, x);
if (o->rch->key > o->key)
Zag(o);
}
o->update();
}
friend void remove(PTreap &x) {
if (x == NULL) return;
remove(x->lch);
remove(x->rch);
delete x; x = NULL;
}
};
std::stack<PTreap> Treap::bin;
namespace Dynamic_TreeDivision{
PTreap tree[N], sonTree[N];
int time, vise[N * 2];
int fa[N], vis[N];
std::set<int> son[N];
void remove(int x) {
vis[x] = time;
for (std::set<int>::iterator i = son[x].begin(); i != son[x].end(); ++i) {
remove(*i);
remove(sonTree[*i]);
}
son[x].clear();
remove(tree[x]);
}
int getCentre(int x, int f, int siz, int &ct) {
int res = 1;
bool ok = true;
for (int i = pre[x]; ~i; i = nxt[i]) {
if (vise[i] == time) continue;
if (to[i] == f) continue;
if (vis[to[i]] != time) continue;
int ss = getCentre(to[i], x, siz, ct);
if (ss > siz / 2) ok = false;
res += ss;
}
if (siz - res > siz / 2) ok = false;
if (ok) ct = x;
return res;
}
void insertAll(int x, int f, int dep, PTreap &p) {
insert(p, dep - r[x]);
for (int i = pre[x]; ~i; i = nxt[i]) {
if (vise[i] == time) continue;
if (to[i] == f) continue;
if (vis[to[i]] != time) continue;
insertAll(to[i], x, dep + c[i], p);
}
}
int divide(int x) {
getCentre(x, 0, getCentre(x, 0, 1000000000, x), x);
insertAll(x, 0, 0, tree[x]);
for (int i = pre[x]; ~i; i = nxt[i]) {
if (vise[i] == time) continue;
if (vis[to[i]] != time) continue;
vise[i] = vise[i ^ 1] = time;
PTreap p = NULL;
insertAll(to[i], 0, c[i], p);
int s = divide(to[i]);
fa[s] = x;
son[x].insert(s);
sonTree[s] = p;
}
return x;
}
void rebuild(int x) {
++time;
remove(x);
int ff = fa[x];
PTreap p = sonTree[x];
sonTree[x] = NULL;
if (ff != 0) son[ff].erase(x);
x = divide(x);
fa[x] = ff;
sonTree[x] = p;
if (ff != 0) son[ff].insert(x);
}
LL insert(int x, int f) {
LL ans = 0;
son[f].insert(x);
fa[x] = f;
for (int i = x; i; i = fa[i]) {
if (fa[i] != 0) {
int d = Tree::dis(fa[i], x);
ans += query(tree[fa[i]], r[x] - d);
ans -= query(sonTree[i], r[x] - d);
insert(sonTree[i], d - r[x]);
}
int d = Tree::dis(i, x);
insert(tree[i], d - r[x]);
}
int rebuildx = 0;
for (int i = x; fa[i]; i = fa[i])
if (tree[i]->siz > tree[fa[i]]->siz * 0.88)
rebuildx = fa[i];
if (rebuildx) rebuild(rebuildx);
return ans;
}
};
Treap node[N * 100];
int main() {
for (int i = 0; i < N * 100; ++i)
Treap::bin.push(node + i);
int n, a, cc, v;
scanf("%*d%d", &n);
LL lastans = 0;
pre[0] = -1;
for (int i = 1; i <= n; ++i) {
scanf("%d%d%d", &a, &cc, &v);
r[i] = v;
a ^= lastans % 1000000000;
pre[i] = -1;
Tree::insert(i, cc, a);
lastans += Dynamic_TreeDivision::insert(i, a);
printf("%lld\n", lastans);
}
return 0;
}
UOJ#55 [WC2014]紫荊花之戀