習題三 16-20
16.證明:\(\lim\limits_{x\rightarrow0}f(x)\)與\(\lim\limits_{x\rightarrow0}f(x^3)\)有一個存在時,另一個也存在,而且兩者相等;問是否\(\lim\limits_{x\rightarrow0}f(x)\)與\(\lim\limits_{x\rightarrow0}f(x^2)\)一定同時存在.
證明
若\(\lim\limits_{x\rightarrow0}f(x)=A\),則\(\forall\varepsilon>0,\exists\delta>0\),當\(|x|<\delta,|f(x)-A|<\varepsilon\)
而當\(|x|<\sqrt[3]{\delta},|f(x^3)-A|<\varepsilon\),即\(\lim\limits_{x\rightarrow0}f(x^3)=A\);
若\(\lim\limits_{x\rightarrow0}f(x^3)=A\),則\(\forall\varepsilon>0,\exists\delta>0\),當\(|x|<\delta,|f(x^3)-A|<\varepsilon\).
而當\(|x|<\delta^3,|f(x)-A|<\varepsilon\),即\(\lim\limits_{x\rightarrow0}f(x)=A\)
不一定,令\(f(x)=\lfloor x\rfloor\).
17.指出下列函數的間斷點,並說明屬於哪一種類型間斷點:
(1)\(f(x)=\text{sgn}(\sin x+\frac{1}{2})\);
\(2k\pi-\frac{\pi}{6},2k\pi+\frac{7\pi}{6},k\in\mathbb{Z}\).跳躍間斷點.
(2)\(f(x)= \begin{cases} \frac{x}{(1+x)^2},&x\not=-1,\\ 0,&x=-1; \end{cases}\)
\(-1\).第二類間斷點.
(3)\(f(x)= \begin{cases} x,&|x|\leqslant1,\\ \ln|x+1|,&|x|>1; \end{cases}\)
\(-1\),第二類間斷點.\(1\),跳躍間斷點.
(4)\(f(x)= \begin{cases} \cos^2\frac{1}{x},&x\not=0,\\ 1,&x=0. \end{cases}\)
\(0\).第二類間斷點.
18.給出下列函數在\(x=0\)的函數值,使其在該點連續:
(1)\(f(x)=\frac{\sqrt[3]{1+x}-1}{\sqrt{1+x}-1}\);
解 \(\frac{2}{3},\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+x}-1}{\sqrt{1+x}-1}=\lim\limits_{x\rightarrow0}\frac{\sqrt{1+x}+1}{\sqrt[3]{(1+x)^2}+\sqrt[3]{1+x}+1}=\frac{2}{3}\)
(2)\(f(x)=\sin x\sin\frac{1}{x}\).
解 \(0,\lim\limits_{x\rightarrow0}|\sin x\sin\frac{1}{x}|\leqslant\lim\limits_{x\rightarrow0}|\sin x|=0,\lim\limits_{x\rightarrow0}\sin x\sin\frac{1}{x}=0\).
19.適當選取\(\alpha\),使函數\(f(x)= \begin{cases} \text{e}^x,&x<0,\\ \alpha+x,&x\geqslant0 \end{cases}\)在\((-\infty,+\infty)\)上連續.
解 \(\alpha=1\).
20.設函數\(f(x)\)在\(x=x_0\)處連續,函數\(g(x)\)在\(x=x_0\)處不連續,問\(f(x)+g(x)\)和\(f(x)g(x)\)是否在\(x=x_0\)處一定不連續.
解 一定;不一定,如\(f(x)\equiv0\).
習題三 16-20