1. 程式人生 > >477. Total Hamming Distance 總的漢明距離

477. Total Hamming Distance 總的漢明距離

blog += all out xpl bject end min which

The Hamming distance between two integers is the number of positions at which the corresponding bits are different.

Now your job is to find the total Hamming distance between all pairs of the given numbers.

Example:

Input: 4, 14, 2

Output: 6

Explanation: In binary representation, the 4 is 0100, 14 is 1110, and 2 is 0010 (just
showing the four bits relevant in this case). So the answer will be:
HammingDistance(4, 14) + HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6.

Note:

  1. Elements of the given array are in the range of 0 to 10^9
  2. Length of the array will not exceed 10^4.

  1. class Solution1(object):
  2. def totalHammingDistance(self, nums):
  3. """
  4. :type nums: List[int]
  5. :rtype: int
  6. """
  7. res = 0
  8. bins = []
  9. for num in nums:
  10. bins
    .append(‘{0:b}‘.format(num).zfill(32))
  11. for i in range(32):
  12. bitCount = 0
  13. # zeroCount
  14. for num in bins:
  15. if num[i] is ‘1‘:
  16. bitCount += 1
  17. # zeroCount = (len(nums) - bitCount)
  18. res += bitCount * (len(nums) - bitCount
    )
  19. return res
  20. class Solution2(object):
  21. def totalHammingDistance(self, nums):
  22. res = 0
  23. for i in range(32):
  24. bitCount = 0
  25. for num in nums:
  26. bitCount += num >> i & 1
  27. res += bitCount * (len(nums) - bitCount)
  28. return res
  29. nums = [4, 14, 2]
  30. s = Solution1()
  31. res = s.totalHammingDistance(nums)
  32. print(res)




來自為知筆記(Wiz)

477. Total Hamming Distance 總的漢明距離