1. 程式人生 > >MongoDB Map Reduce

MongoDB Map Reduce

規模 篩選條件 .post nts 遍歷 分組機制 div 將在 臨時

Map-Reduce是一種計算模型,簡單的說就是將大批量的工作(數據)分解(MAP)執行,然後再將結果合並成最終結果(REDUCE)。

MongoDB提供的Map-Reduce非常靈活,對於大規模數據分析也相當實用。


MapReduce 命令

以下是MapReduce的基本語法:

>db.collection.mapReduce(
   function() {emit(key,value);},  //map 函數
   function(key,values) {return reduceFunction},   //reduce 函數
   {
      out: collection,
      query: document,
      sort: document,
      limit: number
   }
)

使用 MapReduce 要實現兩個函數 Map 函數和 Reduce 函數,Map 函數調用 emit(key, value), 遍歷 collection 中所有的記錄, 將key 與 value 傳遞給 Reduce 函數進行處理。

Map 函數必須調用 emit(key, value) 返回鍵值對。

參數說明:

  • map :映射函數 (生成鍵值對序列,作為 reduce 函數參數)。
  • reduce 統計函數,reduce函數的任務就是將key-values變成key-value,也就是把values數組變成一個單一的值value。。
  • out 統計結果存放集合 (不指定則使用臨時集合,在客戶端斷開後自動刪除)。
  • query 一個篩選條件,只有滿足條件的文檔才會調用map函數。(query。limit,sort可以隨意組合)
  • sort 和limit結合的sort排序參數(也是在發往map函數前給文檔排序),可以優化分組機制
  • limit 發往map函數的文檔數量的上限(要是沒有limit,單獨使用sort的用處不大)

使用 MapReduce

考慮以下文檔結構存儲用戶的文章,文檔存儲了用戶的 user_name 和文章的 status字段:

{
   "post_text": "w3cschool.cn W3Cschool教程,最全的技術文檔。",
   "user_name": "mark",
   "status":"active"
}

現在,我們將在 posts 集合中使用 mapReduce 函數來選取已發布的文章,並通過user_name分組,計算每個用戶的文章數:

>db.posts.mapReduce( 
   function() { emit(this.user_id,1); }, 
   function(key, values) {return Array.sum(values)}, 
      {  
         query:{status:"active"},  
         out:"post_total" 
      }
)

以上 mapReduce 輸出結果為:

{
   "result" : "post_total",
   "timeMillis" : 9,
   "counts" : {
      "input" : 4,
      "emit" : 4,
      "reduce" : 2,
      "output" : 2
   },
   "ok" : 1,
}

結果表明,共有4個符合查詢條件(status:"active")的文檔, 在map函數中生成了4個鍵值對文檔,最後使用reduce函數將相同的鍵值分為兩組。

具體參數說明:

  • result:儲存結果的collection的名字,這是個臨時集合,MapReduce的連接關閉後自動就被刪除了。
  • timeMillis:執行花費的時間,毫秒為單位
  • input:滿足條件被發送到map函數的文檔個數
  • emit:在map函數中emit被調用的次數,也就是所有集合中的數據總量
  • ouput:結果集合中的文檔個數(count對調試非常有幫助)
  • ok:是否成功,成功為1
  • err:如果失敗,這裏可以有失敗原因,不過從經驗上來看,原因比較模糊,作用不大

使用 find 操作符來查看 mapReduce 的查詢結果:

>db.posts.mapReduce( 
   function() { emit(this.user_id,1); }, 
   function(key, values) {return Array.sum(values)}, 
      {  
         query:{status:"active"},  
         out:"post_total" 
      }
).find()

以上查詢顯示如下結果,兩個用戶 tom 和 mark 有兩個發布的文章:

{ "_id" : "tom", "value" : 2 }
{ "_id" : "mark", "value" : 2 }

用類似的方式,MapReduce可以被用來構建大型復雜的聚合查詢。

Map函數和Reduce函數可以使用 JavaScript 來實現,是的MapReduce的使用非常靈活和強大。

MongoDB Map Reduce