生成樹計數及應用 Matrix-Tree
例:給定一個圖,圖上每條邊是紅色或藍色,求恰有 k 條紅邊的生成樹個數. n≤50.
Matrix-Tree定理,對於限制條件可以利用多項式,把紅邊邊權設為 X,藍邊為1.
最後求行列式得到的多項式中 Xk的系數就是答案.同樣這也是利用了邊權乘積的那個推廣.
至於多項式情況下不方便高斯消元的問題.通過代入具體的數插值求多項式就可以解決.
BZOJ 5297
SPOJ 104
https://www.cnblogs.com/zj75211/p/8039443.html
生成樹計數及應用 Matrix-Tree
相關推薦
生成樹計數及應用 Matrix-Tree
log blog 生成樹計數 mathjax 插值 tps 生成樹 www. 應用 例:給定一個圖,圖上每條邊是紅色或藍色,求恰有 k 條紅邊的生成樹個數. n≤50. Matrix-Tree定理,對於限制條件可以利用多項式,把紅邊邊權設為 X,藍邊為1. 最後求行列式得到
最小生成樹計數(Kruskal+Matrix-Tree定理)
以下轉載自:http://blog.csdn.net/jarily/article/details/8902402 /* *演算法引入: *給定一個含有N個結點M條邊的無向圖,求它最小生成樹的個數t(G); * *演算法思想: *拋開“最小”的限制不看,如果只要
生成生成樹計數 --- Matrix-Tree定理(基爾霍夫矩陣樹定理)
模板題點這 題目大意: *一個有n座城市的組成國家,城市1至n編號,其中一些城市之間可以修建高速公路; *需要有選擇的修建一些高速公路,從而組成一個交通網路; *計算有多少種方案
生成樹計數(Matrix-Tree定理)
以下轉載自http://blog.csdn.net/jarily/article/details/8901363 /* *演算法引入: *給定一個無向圖G,求它生成樹的個數t(G); * *演算法思想: *(1)G的度數矩陣D[G]是一個n*n的矩陣,並且滿足:
生成樹計數-Matrix-Tree定理
/* *演算法引入: *給定一個無向圖G,求它生成樹的個數t(G); * *演算法思想: *(1)G的度數矩陣D[G]是一個n*n的矩陣,並且滿足:當i≠j時,dij=0;當i=j時,dij等於vi的度數; *(2)G的鄰接矩陣A[G]是一個n*n的矩陣,並且滿
UVA10766(Organising the Organisation)生成樹計數-Matrix-Tree定理
/* *題目地址: *http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1707; * *題目大意:
uva10766生成樹計數
als mes art 算子 技術分享 math 個數 main mat 此類題是給定一個無向圖,求所有生成樹的個數,生成樹計數要用到Matrix-Tree定理(Kirchhoff矩陣-樹定理) G的度數矩陣D[G]是一個n*n的矩陣,並且滿足:當i≠j時,dij=0;當i
hdu4305生成樹計數
open assert with for def com false tor == 先預處理出距離,然後判斷是否可行,要註意判斷是否在一條直線上時判斷是在兩側還是一邊(wa了四次) double型數據 #include<map> #include<se
【LOJ】#2320. 「清華集訓 2017」生成樹計數
rac res 然而 除了 加法 wap OS 代碼 reg 題解 我,理解題解,用了一天 我,卡常數,又用了一天 到了最後,我才發現,我有個加法取模,寫的是while(c >= MOD) c -= MOD 我把while改成if,時間,少了 六倍。 六倍。 六倍!!
[BZOJ1494]生成樹計數
cto operator 個數 最後一行 判斷 state for break desc [BZOJ1494] [NOI2007]生成樹計數 Description 最近,小棟在無向連通圖的生成樹個數計算方面有了驚人的進展,他發現:·n個結點的環的生成樹個數為n。·n個結點
bzoj1494 生成樹計數 (dp+矩陣快速冪)
sets 增加 set 基本 表示 2種 least 欺詐 main 題面欺詐系列... 因為一個點最多只能連到前k個點,所以只有當前的連續k個點的連通情況是對接下來的求解有用的 那麽就可以計算k個點的所有連通情況,dfs以下發現k=5的時候有52種。 我們把它們用類似於並
[生成樹計數]
prufer序列 每個prufer序列對應一棵唯一的樹。 生成:得到一棵樹的prufer序列的方法是依次去掉編號最小的葉子節點(也就是度數為1的點),然後將這個點的父親加入佇列。直到剩下最後兩個點。這樣就可以得到一個長度為n的prufer序列。 根據prufer序列的生成方式可以得到:每個節點會在pru
BZOJ1494: [NOI2007]生成樹計數(Berlekamp-Massey演算法)
傳送門 題解: 直接打表+BM算出遞推式,BM具體實現可以戳這裡 附上一份其醜無比的BM程式碼: const int L=4e2; namespace bm { int cnt,a[N],fail[N],delta[N]; vector <int> R[N]
1627 Join 生成樹計數模板題
URAL - 1627 Join Businessman Petya recently bought a
清華集訓2017 生成樹計數
題意: 給定 n n n個連通塊,每個連通塊的大小為
【STP】生成樹協議及STP 802.1D (下)
在每一個段上選舉一個指定埠,指定埠負責向這個網段泛洪來自根橋的BPDU。根橋的所有埠都是指定埠,都不會被阻塞。所以上圖中根橋直連的兩端鏈路中,指定埠DP就已經選舉出來了,就剩下SW2-SW3直連的這段鏈路,要PK一下。首先我們知道的是兩者都會收到對方傳送來的BPDU,SW3會收到SW2從P2介面發出的BPD
【STP】生成樹協議及STP 802.1D (上)
通過在交換機上部署STP可以解決二層環路問題。交換機之間需要交換生成樹的協議訊息來檢測橋接環路,以保證STP工作的正常,該訊息稱為網橋協議資料單元(BPDU,Bridge Protocol Data Unit), BPDU訊息中包含著用於STP選舉的各項引數。STP工作的結果是經過一系列的”選舉“後將某個或
【BZOJ3659】Which Dreamed It【有向圖歐拉回路計數】【matrix tree定理】【BEST定理】【高斯消元】
定理題... /* Think Thank Thunk */ #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typede
hdu4305Lightning 生成樹計數(基爾霍夫矩陣)+高斯消元+逆元
題意:比較裸的生成樹計數問題。 如何處理生成樹計數問題? 基爾霍夫矩陣: if i==j Kir[i][j] = i的度數 if i!=j Kir[i][j] = i到j的平行邊的個數的負數 即,基爾霍夫矩陣 = 度數矩陣 - 鄰接矩陣 將基爾霍夫矩陣刪去第i
kuangbin專題八 UVA10766 (生成樹計數)Organising the Organisation(請無視這篇文章)
題意: 給出n,m,k,代表一家公司有n個部門,編號1到n,有m組關係,表示i和j不能直接聯通,k代表主管部門,問你有多少種分層方案。另外,這道題的k可以忽略掉,所以他的範圍完全是嚇唬人的。 題解: 抱歉,這道題我真的無法弄的通俗的說出來