再論sklearn分類器
阿新 • • 發佈:2018-07-30
iter zip 效果圖 nts cnblogs port score entropy pos
https://www.cnblogs.com/hhh5460/p/5132203.html
這幾天在看 sklearn 的文檔,發現他的分類器有很多,這裏做一些簡略的記錄。
大致可以將這些分類器分成兩類: 1)單一分類器,2)集成分類器
一、單一分類器
下面這個例子對一些單一分類器效果做了比較
按 Ctrl+C 復制代碼 按 Ctrl+C 復制代碼下圖是效果圖:
二、集成分類器
集成分類器有四種:Bagging, Voting, GridSearch, PipeLine。最後一個PipeLine其實是管道技術
1.Bagging
from sklearn.ensemble import BaggingClassifier from sklearn.neighbors import KNeighborsClassifier meta_clf = KNeighborsClassifier() bg_clf = BaggingClassifier(meta_clf, max_samples=0.5, max_features=0.5)
2.Voting
from sklearn import datasets from sklearn import cross_validation from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target clf1 = LogisticRegression(random_state=1) clf2 = RandomForestClassifier(random_state=1) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[(‘lr‘, clf1), (‘rf‘, clf2), (‘gnb‘, clf3)], voting=‘hard‘, weights=[2,1,2]) for clf, label in zip([clf1, clf2, clf3, eclf], [‘Logistic Regression‘, ‘Random Forest‘, ‘naive Bayes‘, ‘Ensemble‘]): scores = cross_validation.cross_val_score(clf, X, y, cv=5, scoring=‘accuracy‘) print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
3.GridSearch
import numpy as np from sklearn.datasets import load_digits from sklearn.ensemble import RandomForestClassifier from sklearn.grid_search import GridSearchCV from sklearn.grid_search import RandomizedSearchCV # 生成數據 digits = load_digits() X, y = digits.data, digits.target # 元分類器 meta_clf = RandomForestClassifier(n_estimators=20) # ================================================================= # 設置參數 param_dist = {"max_depth": [3, None], "max_features": sp_randint(1, 11), "min_samples_split": sp_randint(1, 11), "min_samples_leaf": sp_randint(1, 11), "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # 運行隨機搜索 RandomizedSearch n_iter_search = 20 rs_clf = RandomizedSearchCV(meta_clf, param_distributions=param_dist, n_iter=n_iter_search) start = time() rs_clf.fit(X, y) print("RandomizedSearchCV took %.2f seconds for %d candidates" " parameter settings." % ((time() - start), n_iter_search)) print(rs_clf.grid_scores_) # ================================================================= # 設置參數 param_grid = {"max_depth": [3, None], "max_features": [1, 3, 10], "min_samples_split": [1, 3, 10], "min_samples_leaf": [1, 3, 10], "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # 運行網格搜索 GridSearch gs_clf = GridSearchCV(meta_clf, param_grid=param_grid) start = time() gs_clf.fit(X, y) print("GridSearchCV took %.2f seconds for %d candidate parameter settings." % (time() - start, len(gs_clf.grid_scores_))) print(gs_clf.grid_scores_)
4.PipeLine
第一個例子
from sklearn import svm from sklearn.datasets import samples_generator from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_regression from sklearn.pipeline import Pipeline # 生成數據 X, y = samples_generator.make_classification(n_informative=5, n_redundant=0, random_state=42) # 定義Pipeline,先方差分析,再SVM anova_filter = SelectKBest(f_regression, k=5) clf = svm.SVC(kernel=‘linear‘) pipe = Pipeline([(‘anova‘, anova_filter), (‘svc‘, clf)]) # 設置anova的參數k=10,svc的參數C=0.1(用雙下劃線"__"連接!) pipe.set_params(anova__k=10, svc__C=.1) pipe.fit(X, y) prediction = pipe.predict(X) pipe.score(X, y) # 得到 anova_filter 選出來的特征 s = pipe.named_steps[‘anova‘].get_support() print(s)
第二個例子
import numpy as np from sklearn import linear_model, decomposition, datasets from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target # 定義管道,先降維(pca),再邏輯回歸 pca = decomposition.PCA() logistic = linear_model.LogisticRegression() pipe = Pipeline(steps=[(‘pca‘, pca), (‘logistic‘, logistic)]) # 把管道再作為grid_search的estimator n_components = [20, 40, 64] Cs = np.logspace(-4, 4, 3) estimator = GridSearchCV(pipe, dict(pca__n_components=n_components, logistic__C=Cs)) estimator.fit(X_digits, y_digits)
再論sklearn分類器