PAT1001害死人不償命的(3n+1)猜想
阿新 • • 發佈:2018-08-05
style num 命題 大會 == 大學 end using clas
1001 害死人不償命的(3n+1)猜想 (15)(15 分)
卡拉茲(Callatz)猜想:
對任何一個自然數n,如果它是偶數,那麽把它砍掉一半;如果它是奇數,那麽把(3n+1)砍掉一半。這樣一直反復砍下去,最後一定在某一步得到n=1。卡拉茲在1950年的世界數學家大會上公布了這個猜想,傳說當時耶魯大學師生齊動員,拼命想證明這個貌似很傻很天真的命題,結果鬧得學生們無心學業,一心只證(3n+1),以至於有人說這是一個陰謀,卡拉茲是在蓄意延緩美國數學界教學與科研的進展……
我們今天的題目不是證明卡拉茲猜想,而是對給定的任一不超過1000的正整數n,簡單地數一下,需要多少步(砍幾下)才能得到n=1?
輸入格式:每個測試輸入包含1個測試用例,即給出自然數n的值。
輸出格式:輸出從n計算到1需要的步數。
輸入樣例:
3
輸出樣例:
5
#include<iostream> using namespace std; int main() { int count = 0; int num; cin>>num; while(num != 1) { if(num % 2 == 0) num = num / 2; else num = (num * 3 + 1) / 2; count++; } cout << count << endl; }
PAT1001害死人不償命的(3n+1)猜想