1. 程式人生 > >Unknown Treasure (盧卡斯 + 孫子定理, 模板題)

Unknown Treasure (盧卡斯 + 孫子定理, 模板題)

std 參考 模板題 family can 組合數 typedef www. class

Unknown Treasure

參考鏈接 : https://www.cnblogs.com/linyujun/p/5199684.html

盧卡斯定理 : C(n, m) % p = C(n / p, m / p) * C(n%p, m%p) % p;

孫子定理 : https://blog.csdn.net/yskyskyer123/article/details/49032227

先用盧卡斯求出每個素數對大組合數的取模, 再用孫子定理將他們合並;

#include<cstdio>
typedef long long LL;
const int N = 100000 + 5;
LL mul(LL a, LL b, LL p){
//快速乘,計算a*b%p LL ret = 0; while(b){ if(b & 1) ret = (ret + a) % p; a = (a + a) % p; b >>= 1; } return ret; } LL fact(int n, LL p){//n的階乘求余p LL ret = 1; for (int i = 1; i <= n ; i ++) ret = ret * i % p ; return ret ; } void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){
if (!b) {d = a, x = 1, y = 0;} else{ ex_gcd(b, a % b, y, x, d); y -= x * (a / b); } } LL inv(LL t, LL p){//如果不存在,返回-1 LL d, x, y; ex_gcd(t, p, x, y, d); return d == 1 ? (x % p + p) % p : -1; } LL comb(int n, int m, LL p){//C(n, m) % p if (m < 0 || m > n) return
0; return fact(n, p) * inv(fact(m, p), p) % p * inv(fact(n-m, p), p) % p; } LL Lucas(LL n, LL m, int p){ return m ? Lucas(n/p, m/p, p) * comb(n%p, m%p, p) % p : 1; } LL china(int n, LL *a, LL *m){//中國剩余定理 LL M = 1, ret = 0; for(int i = 0; i < n; i ++) M *= m[i]; for(int i = 0; i < n; i ++){ LL w = M / m[i]; //ret = (ret + w * inv(w, m[i]) * a[i]) % M;//這句寫了會WA,用下面那句 ret = (ret + mul(w * inv(w, m[i]), a[i], M)) % M; } return (ret + M) % M; } int main(){ int T, k; LL n, m, p[15], r[15]; scanf("%d", &T); while(T--){ scanf("%I64d%I64d%d", &n, &m, &k); for(int i = 0; i < k; i ++){ scanf("%I64d", &p[i]); r[i] = Lucas(n, m, p[i]); } printf("%I64d\n", china(k, r, p)); } }

Unknown Treasure (盧卡斯 + 孫子定理, 模板題)