1. 程式人生 > >POJ 3662 (二分+SPFA

POJ 3662 (二分+SPFA

conn prop his scrip red system ever class determine

Telephone Lines
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 8856 Accepted: 3211

Description

Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncooperative, so he needs to pay for some of the cables required to connect his farm to the phone system.

There are N (1 ≤ N ≤ 1,000) forlorn telephone poles conveniently numbered 1..N that are scattered around Farmer John‘s property; no cables connect any them. A total of P (1 ≤ P ≤ 10,000) pairs of poles can be connected by a cable; the rest are too far apart.

The i-th cable can connect the two distinct poles Ai

and Bi, with length Li (1 ≤ Li ≤ 1,000,000) units if used. The input data set never names any {Ai, Bi} pair more than once. Pole 1 is already connected to the phone system, and pole N is at the farm. Poles 1 and N need to be connected by a path of cables; the rest of the poles might be used or might not be used.

As it turns out, the phone company is willing to provide Farmer John with K (0 ≤ K < N) lengths of cable for free. Beyond that he will have to pay a price equal to the length of the longest remaining cable he requires (each pair of poles is connected with a separate cable), or 0 if he does not need any additional cables.

Determine the minimum amount that Farmer John must pay.

Input

* Line 1: Three space-separated integers: N, P, and K
* Lines 2..P+1: Line i+1 contains the three space-separated integers: Ai, Bi, and Li

Output

* Line 1: A single integer, the minimum amount Farmer John can pay. If it is impossible to connect the farm to the phone company, print -1.

Sample Input

5 7 1
1 2 5
3 1 4
2 4 8
3 2 3
5 2 9
3 4 7
4 5 6

Sample Output

4

Source

USACO 2008 January Silver 題意:求一條路徑從1到n使第k+1大的邊最小。 思路:二分第k+1大的路徑長度mid,大於mid的邊標記為1,否則標記為0,跑一遍SPFA,當d[n]<=k就為滿足條件,取最小的mid。 代碼:
 1 #include"bits/stdc++.h"
 2 #define db double
 3 #define ll long long
 4 #define vl vector<ll>
 5 #define ci(x) scanf("%d",&x)
 6 #define cd(x) scanf("%lf",&x)
 7 #define cl(x) scanf("%lld",&x)
 8 #define pi(x) printf("%d\n",x)
 9 #define pd(x) printf("%f\n",x)
10 #define pl(x) printf("%lld\n",x)
11 #define rep(i, n) for(int i=0;i<n;i++)
12 using namespace std;
13 const int N   = 1e6 + 5;
14 const int mod = 1e9 + 7;
15 const int MOD = 998244353;
16 const db  PI  = acos(-1.0);
17 const db  eps = 1e-10;
18 int R()
19 {
20     int f=1,x=0;
21     char e=getchar();
22     while(e<0||e>9){if(e==-)f=-1;e=getchar();}
23     while(e>=0&&e<=9){x=x*10+e-0;e=getchar();}
24     return f*x;
25 }
26 
27 const int inf=1128481603;
28 int n,m,k;
29 struct P{int v,dis,nxt;}E[50005];
30 int head[N],tot;
31 int d[2005],vis[2005];//數組開太大會T
32 int l=0,r=1e6+10,mid;
33 
34 void add(int u,int v,int dis)
35 {
36     E[++tot].nxt=head[u];
37     E[tot].v=v; E[tot].dis=dis;
38     head[u]=tot;
39 }
40 
41 void SPFA()
42 {
43     memset(d,67,sizeof(d)); d[1]=0;
44     queue<int> q; q.push(1);
45     memset(vis,0,sizeof(vis));
46     while(!q.empty())
47     {
48         int u=q.front();
49         q.pop(); vis[u]=0;
50         for(int i=head[u];i;i=E[i].nxt)
51         {
52             int v=E[i].v,dis=(E[i].dis>mid);
53             if(d[v]>d[u]+dis)
54             {
55                 d[v]=d[u]+dis;
56                 if(!vis[v])q.push(v),vis[v]=1;
57             }
58         }
59     }
60 }
61 
62 int main()
63 {
64     n=R();m=R();k=R();
65     for(int i=1;i<=m;++i)
66     {
67         int u=R(),v=R(),dis=R();
68         add(u,v,dis);add(v,u,dis);
69     }
70     int ans=-1;
71     while(l<=r)
72     {
73         mid=(l+r)>>1;
74         SPFA();
75         if(d[n]==inf){ printf("-1"); return 0;}
76         if(d[n]<=k) ans=mid,r=mid-1;
77         else l=mid+1;
78     }
79     printf("%d",ans);
80     return 0;
81 }

POJ 3662 (二分+SPFA