HDU多校9 Rikka with Nash Equilibrium(記憶化搜索/dp)
阿新 • • 發佈:2018-08-22
align previous msu higher ali mem import eno ont
Rikka and Yuta are playing a simple matrix game. At the beginning of the game, Rikka shows an n×m integer matrix A. And then Yuta needs to choose an integer in [1,n], Rikka needs to choose an integer in [1,m]. Let i be Yuta‘s number and j be Rikka‘s number, the final score of the game is Ai,j.
In the remaining part of this statement, we use (i,j) to denote the strategy of Yuta and Rikka.
For example, when n=m=3 and matrix A is
???111241131???
If the strategy is (1,2), the score will be 2; if the strategy is (2,2), the score will be 4.
A pure strategy Nash equilibrium of this game is a strategy (x,y) which satisfies neither Rikka nor Yuta can make the score higher by changing his(her) strategy unilaterally. Formally, (x,y) is a Nash equilibrium if and only if:
{Ax,y≥Ai,y ∀i∈[1,n]Ax,y≥Ax,j ∀j∈[1,m]
In the previous example, there are two pure strategy Nash equilibriums: (3,1) and (2,2).
To make the game more interesting, Rikka wants to construct a matrix A for this game which satisfies the following conditions:
1. Each integer in [1,nm] occurs exactly once in A.
2. The game has at most one pure strategy Nash equilibriums.
Now, Rikka wants you to count the number of matrixes with size n×m which satisfy the conditions.
The first line of each testcase contains three numbers n,m and K(1≤n,m≤80,1≤K≤109).
The input guarantees that there are at most 3 testcases with max(n,m)>50.
Rikka with Nash Equilibrium
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 1460 Accepted Submission(s): 591
Rikka and Yuta are playing a simple matrix game. At the beginning of the game, Rikka shows an n×m
In the remaining part of this statement, we use (i,j) to denote the strategy of Yuta and Rikka.
For example, when n=m=3
???111241131???
If the strategy is (1,2), the score will be 2; if the strategy is (2,2), the score will be 4.
A pure strategy Nash equilibrium of this game is a strategy (x,y) which satisfies neither Rikka nor Yuta can make the score higher by changing his(her) strategy unilaterally. Formally, (x,y)
{Ax,y≥Ai,y ∀i∈[1,n]Ax,y≥Ax,j ∀j∈[1,m]
In the previous example, there are two pure strategy Nash equilibriums: (3,1) and (2,2).
To make the game more interesting, Rikka wants to construct a matrix A for this game which satisfies the following conditions:
1. Each integer in [1,nm] occurs exactly once in A.
2. The game has at most one pure strategy Nash equilibriums.
Now, Rikka wants you to count the number of matrixes with size n×m which satisfy the conditions.
Input The first line contains a single integer t(1≤t≤20), the number of the testcases.
The first line of each testcase contains three numbers n,m and K(1≤n,m≤80,1≤K≤109).
The input guarantees that there are at most 3 testcases with max(n,m)>50.
Output For each testcase, output a single line with a single number: the answer modulo K.
Sample Input 2 3 3 100 5 5 2333
Sample Output 64 1170
Source 2018 Multi-University Training Contest 9
在一個矩陣中,如果僅有一個數同時是所在行所在列最大值,那麽這個數滿足納什均衡。
構造一個n*m的矩陣,裏面填入[1,n*m]互不相同的數字,求有多少種構造方案。
由題可得,滿足納什均衡的數一定是最大值n*m。因此我們可以從大往小依次將數填入矩陣,小數依附於大數的行或列,由此產生的三種行為:
1.所在列有大數,行+1 數+1
2.所在行有大數,列+1 數+1
3.所在行列都有大數,位於交界處,數+1
dp三種狀態[占有行數][占有列數][占有個數]進行求解。因為本題數據很強,所以需要以下優化:
1.盡可能得減少取模次數
2.註意狀態與遍歷順序保持一致
//記憶化搜索 #include<bits/stdc++.h> using namespace std; typedef long long ll; ll mod,n,m; ll dp[81][81][6401]; ll dfs(ll x,ll y,ll z){ if(dp[x][y][z]>-1) return dp[x][y][z]; ll tmp=0; if(x<n) tmp+=y*(n-x)*dfs(x+1,y,z+1)%mod; if(y<m) tmp+=x*(m-y)*dfs(x,y+1,z+1)%mod; if(x*y>z) tmp+=(x*y-z)*dfs(x,y,z+1)%mod; return dp[x][y][z]=tmp; } int main() { ll t; scanf("%lld",&t); while(t--){ memset(dp,-1,sizeof(dp)); //答案有0的情況,因此初始化為-1 scanf("%lld%lld%lld",&n,&m,&mod); dp[n][m][n*m]=1; ll ans=n*m*dfs(1,1,1)%mod; printf("%lld\n",ans); } }
//dp #include<bits/stdc++.h> #define MAX 82 #define INF 0x3f3f3f3f using namespace std; typedef long long ll; ll dp[MAX][MAX][6402]; //註意順序 int main() { int t,n,m,MOD,i,j,k; scanf("%d",&t); while(t--){ scanf("%d%d%d",&n,&m,&MOD); memset(dp,0,sizeof(dp)); dp[1][1][1]=n*m; for(i=1;i<=n;i++){ for(j=1;j<=m;j++){ for(k=1;k<n*m;k++){ //註意順序 dp[i+1][j][k+1]+=(n-i)*j*dp[i][j][k]; if(dp[i+1][j][k+1]>=MOD) dp[i+1][j][k+1]%=MOD; dp[i][j+1][k+1]+=(m-j)*i*dp[i][j][k]; if(dp[i][j+1][k+1]>=MOD) dp[i][j+1][k+1]%=MOD; if(i*j>k){ dp[i][j][k+1]+=(i*j-k)*dp[i][j][k]; if(dp[i][j][k+1]>=MOD) dp[i][j][k+1]%=MOD; } } } } printf("%lld\n",dp[n][m][n*m]%MOD); } return 0; }
HDU多校9 Rikka with Nash Equilibrium(記憶化搜索/dp)