[luogu4026 SHOI2008]循環的債務 (DP)
阿新 • • 發佈:2018-10-02
space possible getchar size ios sin algo etc cst
傳送門
吐槽洛谷難度標簽qwq
Solution
顯然是一道神奇的DP,由於總錢數不變,我們只需要枚舉前兩個人的錢數就可知第三個人的錢數
DP的時候先枚舉只用前k個幣種,然後枚舉前兩個人的錢數,然後枚舉轉移即可
Code
#include <cmath> #include <cstdio> #include <cstring> #include <cstdlib> #include <iostream> #include <algorithm> #define F(i,a,b) for(register int i=(a);i<=(b);i++) using namespace std; inline int read() { int x=0,f=1;char c=getchar(); while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();} while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar(); return x*f; } const int N=1010,INF=0x3f3f3f3f; int p[7]={0,100,50,20,10,5,1}; int sum,s1,s2,x1,x2,x3,ans; int f[7][N][N],num[4][7]; int main() { x1=read(),x2=read(),x3=read(); F(i,1,3) F(j,1,6) sum+=(num[i][j]=read())*p[j]; F(i,1,6) s1+=num[1][i]*p[i],s2+=num[2][i]*p[i]; if(s1-x1+x3>sum||s2-x2+x1>sum||sum-s1-s2-x3+x2>sum) return puts("impossible"),0; memset(f,0x3f,sizeof(f));f[0][s1][s2]=0; F(k,1,6) { int tot=num[1][k]+num[2][k]+num[3][k]; F(i,0,sum) F(j,0,sum-i) { if(f[k-1][i][j]==INF) continue; F(x,0,tot) F(y,0,tot-x) { int z=tot-x-y; int s=(abs(num[1][k]-x)+abs(num[2][k]-y)+abs(num[3][k]-z))/2; int d1=i-(num[1][k]-x)*p[k],d2=j-(num[2][k]-y)*p[k]; if(d1+d2>sum) continue; if(d1<0||d2<0) continue; f[k][d1][d2]=min(f[k][d1][d2],f[k-1][i][j]+s); } } } int ans=f[6][s1-x1+x3][s2-x2+x1]; if(ans==INF) return puts("impossible"),0; return printf("%d",ans),0; }
[luogu4026 SHOI2008]循環的債務 (DP)