1. 程式人生 > >模板【洛谷P3390】 【模板】矩陣快速冪

模板【洛谷P3390】 【模板】矩陣快速冪

i++ pac get lld getchar () lin line its

P3390 【模板】矩陣快速冪

題目描述

給定n*n的矩陣A,求A^k

矩陣A的大小為n×m,B的大小為n×k,設C=A×B

則C_{i,j}=\sum\limits_{k=1}^{n}A_{i,p}×B_{p,j}

矩陣乘滿足結合律:(AB)C=A(BC)

有一種特殊的矩陣:單位矩陣,它從左上角到右下角的對角線上的元素均為1,除此以外全都為0。它在矩陣乘中相當於數乘中的1,即任何矩陣乘它都等於本身。

code:

#include <iostream>
#include <cstdio>
#include <cstring>

#define int long long

using namespace std;

const int mod=1e9+7;

const int wx=117;

inline int read(){
    int sum=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
    while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
    return sum*f;
}

int n,k;

struct mat{
    int a[wx][wx];
    mat(){memset(a,0,sizeof a);}
    void e(){for(int i=0;i<=n;i++)a[i][i]=1;}
    friend mat operator * (const mat & a,const mat & b){
        mat c; 
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                for(int k=1;k<=n;k++){
                    c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j])%mod;
                }
            }
        }
        return c;
    }
}a,ans;

void ksm(mat aa,int b){
    ans.e();
    while(b){
        if(b&1)ans=ans*aa;
        aa=aa*aa;
        b>>=1;
    }
}

signed main(){
    n=read(); k=read();
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            a.a[i][j]=read();
        }
    }
    ksm(a,k);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            printf("%lld ",ans.a[i][j]);
        }
        puts("");
    }
    return 0;
}

模板【洛谷P3390】 【模板】矩陣快速冪