1. 程式人生 > >Spark內建框架rpc通訊機制及RpcEnv基礎設施-Spark商業環境實戰

Spark內建框架rpc通訊機制及RpcEnv基礎設施-Spark商業環境實戰

本套系列部落格從真實商業環境抽取案例進行總結和分享,並給出Spark原始碼解讀及商業實戰指導,請持續關注本套部落格。版權宣告:本套Spark原始碼解讀及商業實戰歸作者(秦凱新)所有,禁止轉載,歡迎學習。

Spark商業環境實戰及調優進階系列

1. Spark 內建框架rpc通訊機制

TransportContext 內部握有建立TransPortClient和TransPortServer的方法實現,但卻屬於最底層的RPC通訊設施。為什麼呢?

因為成員變數RPCHandler是抽象的,並沒有具體的訊息處理,而且TransportContext功能也在於建立TransPortClient客戶端和TransPortServer服務端。具體解釋如下:

 Contains the context to create a {@link TransportServer}, {@link TransportClientFactory}, and to
 setup Netty Channel pipelines with a
 {@link org.apache.spark.network.server.TransportChannelHandler}.
複製程式碼

所以TransportContext只能為最底層的通訊基礎。上層為NettyRPCEnv高層封裝,並持有TransportContext引用,在TransportContext中傳入NettyRpcHandler實體,來實現netty通訊回撥Handler處理。TransportContext程式碼片段如下:

 /* The TransportServer and TransportClientFactory both create a TransportChannelHandler for each
 * channel. As each TransportChannelHandler contains a TransportClient, this enables server
 * processes to send messages back to the client on an existing channel.
 */
  public class TransportContext {
  private final Logger logger = LoggerFactory.getLogger(TransportContext.class);
  private final TransportConf conf;
  private final RpcHandler rpcHandler;
  private final boolean closeIdleConnections;

  private final MessageEncoder encoder;
  private final MessageDecoder decoder;

  public TransportContext(TransportConf conf, RpcHandler rpcHandler) {
    this(conf, rpcHandler, false);
  }
複製程式碼

1.1 客戶端和服務端統一的訊息接收處理器 TransportChannelHandlerer

TransportClient 和TransportServer 在配置Netty的pipeLine的handler處理器時,均採用TransportChannelHandler, 來做統一的訊息receive處理。為什麼呢?在於統一訊息處理入口,TransportChannelHandlerer根據訊息型別執行不同的處理,程式碼片段如下:

 public void channelRead(ChannelHandlerContext ctx, Object request) throws Exception {
    if (request instanceof RequestMessage) {
      requestHandler.handle((RequestMessage) request);
   } else if (request instanceof ResponseMessage) {
      responseHandler.handle((ResponseMessage) request);
   } else {
      ctx.fireChannelRead(request);
   }
複製程式碼

}

TransportContext初始化Pipeline的程式碼片段:

  public TransportChannelHandler initializePipeline(
  SocketChannel channel,
  RpcHandler channelRpcHandler) {
  try {
    
  TransportChannelHandler channelHandler = createChannelHandler(channel,
  
  channelRpcHandler);
  channel.pipeline()
    .addLast("encoder", ENCODER)
    .addLast(TransportFrameDecoder.HANDLER_NAME, NettyUtils.createFrameDecoder())
    .addLast("decoder", DECODER)
    .addLast("idleStateHandler", new IdleStateHandler(0, 0,   
                   conf.connectionTimeoutMs() / 1000))
                   
    .addLast("handler", channelHandler);
    
  return channelHandler;
} catch (RuntimeException e) {
  logger.error("Error while initializing Netty pipeline", e);
  throw e;
}
複製程式碼

客戶端和服務端統一的訊息接收處理器 TransportChannelHandlerer 是這個函式:createChannelHandler(channel, channelRpcHandler)實現的,也即統一了這個netty的訊息接受處理,程式碼片段如下:

    /**
    * Creates the server- and client-side handler which is used to handle both RequestMessages and
    * ResponseMessages. The channel is expected to have been successfully created, though certain
    * properties (such as the remoteAddress()) may not be available yet.
    */
    
    private TransportChannelHandler createChannelHandler(Channel channel,                                    RpcHandler rpcHandler) {
    
    TransportResponseHandler responseHandler = new                     
    TransportResponseHandler(channel);
    TransportClient client = new TransportClient(channel, responseHandler);
    
    TransportRequestHandler requestHandler = new TransportRequestHandler(channel, client,
    rpcHandler, conf.maxChunksBeingTransferred());
    
    return new TransportChannelHandler(client, responseHandler, requestHandler,
        conf.connectionTimeoutMs(), closeIdleConnections);
    }
複製程式碼

不過transportClient對應的是TransportResponseHander,TransportServer對應的的是TransportRequestHander。 在進行訊息處理時,首先會經過TransportChannelHandler根據訊息型別進行處理器選擇,分別進行netty的訊息生命週期管理:

  • exceptionCaught
  • channelActive
  • channelInactive
  • channelRead
  • userEventTriggered

1.2 transportClient對應的是ResponseMessage

客戶端一旦傳送訊息(均為Request訊息),就會在

private final Map<Long, RpcResponseCallback> outstandingRpcs;

private final Map<StreamChunkId, ChunkReceivedCallback> outstandingFetches

中快取,用於回撥處理。

1.3 transportServer對應的是RequestMessage

服務端接收訊息型別(均為Request訊息)

  • ChunkFetchRequest
  • RpcRequest
  • OneWayMessage
  • StremRequest

服務端響應型別(均為Response訊息):

  • ChunkFetchSucess
  • ChunkFetchFailure
  • RpcResponse
  • RpcFailure

2. Spark RpcEnv基礎設施

2.1 上層建築NettyRPCEnv

上層建築NettyRPCEnv,持有TransportContext引用,在TransportContext中傳入NettyRpcHandler實體,來實現netty通訊回撥Handler處理

  • Dispatcher
  • TransportContext
  • TransPortClientFactroy
  • TransportServer
  • TransportConf

2.2 RpcEndPoint 與 RPCEndPointRef 端點

  • RpcEndPoint 為服務端
  • RPCEndPointRef 為客戶端

2.2 Dispacher 與 Inbox 與 Outbox

  • 一個端點對應一個Dispacher,一個Inbox , 多個OutBox
  1. RpcEndpoint:RPC端點 ,Spark針對於每個節點(Client/Master/Worker)都稱之一個Rpc端點 ,且都實現RpcEndpoint介面,內部根據不同端點的需求,設計不同的訊息和不同的業務處理,如果需要傳送(詢問)則呼叫Dispatcher
  2. RpcEnv:RPC上下文環境,每個Rpc端點執行時依賴的上下文環境稱之為RpcEnv
  3. Dispatcher:訊息分發器,針對於RPC端點需要傳送訊息或者從遠端RPC接收到的訊息,分發至對應的指令收件箱/發件箱。如果指令接收方是自己存入收件箱,如果指令接收方為非自身端點,則放入發件箱
  4. Inbox:指令訊息收件箱,一個本地端點對應一個收件箱,Dispatcher在每次向Inbox存入訊息時,都將對應EndpointData加入內部待Receiver Queue中,另外Dispatcher建立時會啟動一個單獨執行緒進行輪詢Receiver Queue,進行收件箱訊息消費
  5. OutBox:指令訊息發件箱,一個遠端端點對應一個發件箱,當訊息放入Outbox後,緊接著將訊息通過TransportClient傳送出去。訊息放入發件箱以及傳送過程是在同一個執行緒中進行,這樣做的主要原因是遠端訊息分為RpcOutboxMessage, OneWayOutboxMessage兩種訊息,而針對於需要應答的訊息直接傳送且需要得到結果進行處理
  6. TransportClient:Netty通訊客戶端,根據OutBox訊息的receiver資訊,請求對應遠端TransportServer
  7. TransportServer:Netty通訊服務端,一個RPC端點一個TransportServer,接受遠端訊息後呼叫Dispatcher分發訊息至對應收發件箱

Spark在Endpoint的設計上核心設計即為Inbox與Outbox,其中Inbox核心要點為:

  1. 內部的處理流程拆分為多個訊息指令(InboxMessage)存放入Inbox
  2. 當Dispatcher啟動最後,會啟動一個名為【dispatcher-event-loop】的執行緒掃描Inbox待處理InboxMessage,並呼叫Endpoint根據InboxMessage型別做相應處理
  3. 當Dispatcher啟動最後,預設會向Inbox存入OnStart型別的InboxMessage,Endpoint在根據OnStart指令做相關的額外啟動工作,端點啟動後所有的工作都是對OnStart指令處理衍生出來的,因此可以說OnStart指令是相互通訊的源頭。
  • 注意: 一個端點對應一個Dispacher,一個Inbox , 多個OutBox,可以看到 inbox在Dispacher 中且在EndPointData內部:

     private final RpcHandler rpcHandler;
    /**
    * A message dispatcher, responsible for routing RPC messages to the appropriate endpoint(s).
    */
     private[netty] class Dispatcher(nettyEnv: NettyRpcEnv) extends Logging {
     private class EndpointData(
        val name: String,
        val endpoint: RpcEndpoint,
        val ref: NettyRpcEndpointRef) {
      val inbox = new Inbox(ref, endpoint)
    }
    private val endpoints = new ConcurrentHashMap[String, EndpointData]
    private val endpointRefs = new ConcurrentHashMap[RpcEndpoint, RpcEndpointRef]
    
    // Track the receivers whose inboxes may contain messages.
    private val receivers = new LinkedBlockingQueue[EndpointData]
    複製程式碼

  • 注意: 一個端點對應一個Dispacher,一個Inbox , 多個OutBox,可以看到 OutBox在NettyRpcEnv內部:

    private[netty] class NettyRpcEnv(
      val conf: SparkConf,
      javaSerializerInstance: JavaSerializerInstance,
      host: String,
      securityManager: SecurityManager) extends RpcEnv(conf) with Logging {
      
      private val dispatcher: Dispatcher = new Dispatcher(this)
      
      private val streamManager = new NettyStreamManager(this)
      private val transportContext = new TransportContext(transportConf,
      new NettyRpcHandler(dispatcher, this, streamManager))
      
    /**
     * A map for [[RpcAddress]] and [[Outbox]]. When we are connecting to a remote [[RpcAddress]],
     * we just put messages to its [[Outbox]] to implement a non-blocking `send` method.
     */
    private val outboxes = new ConcurrentHashMap[RpcAddress, Outbox]()
    複製程式碼

2.3 Dispacher 與 Inbox 與 Outbox

Dispatcher的程式碼片段中,包含了核心的訊息傳送程式碼邏輯,意思是:向服務端傳送一條訊息,也即同時放進Dispatcher中的receiverrs中,也放進inbox的messages中。這個高層封裝,如Master和Worker端點發送訊息都是通過NettyRpcEnv中的 Dispatcher來實現的。在Dispatcher中有一個執行緒,叫做MessageLoop,實現訊息的及時處理。

 /**
 * Posts a message to a specific endpoint.
 *
 * @param endpointName name of the endpoint.
 * @param message the message to post
  * @param callbackIfStopped callback function if the endpoint is stopped.
 */
 private def postMessage(
  endpointName: String,
  message: InboxMessage,
  callbackIfStopped: (Exception) => Unit): Unit = {
   val error = synchronized {
   val data = endpoints.get(endpointName)
   
  if (stopped) {
    Some(new RpcEnvStoppedException())
  } else if (data == null) {
    Some(new SparkException(s"Could not find $endpointName."))
  } else {
  
    data.inbox.post(message)
    receivers.offer(data)
    
    None
  }
 }
複製程式碼

注意:預設第一條訊息為onstart,為什麼呢?看這裡:

看到下面的 new EndpointData(name, endpoint, endpointRef) 了嗎?

def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {
 val addr = RpcEndpointAddress(nettyEnv.address, name)
    val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)
    synchronized {
  if (stopped) {
    throw new IllegalStateException("RpcEnv has been stopped")
  }
  if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {
    throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")
  }
  val data = endpoints.get(name)
  endpointRefs.put(data.endpoint, data.ref)
  receivers.offer(data)  // for the OnStart message
}
endpointRef
複製程式碼

}

注意EndpointData裡面包含了inbox,因此Inbox初始化的時候,放進了onstart

 private class EndpointData(
  val name: String,
  val endpoint: RpcEndpoint,
  val ref: NettyRpcEndpointRef) {
val inbox = new Inbox(ref, endpoint)
複製程式碼

}

onstart在Inbox初始化時出現了,注意每一個端點只有一個inbox,比如:master 節點。

2.4 傳送訊息流程為分為兩種,一種端點(Master)自己把訊息傳送到本地Inbox,一種端點(Master)接收到訊息後,通過TransPortRequestHander接收後處理,扔進Inbox

2.4.1 端點(Master)自己把訊息傳送到本地Inbox
- endpoint(Master) -> NettyRpcEnv-> Dispatcher ->  postMessage -> MessageLoop(Dispatcher) -> inbox -> process -> endpoint.receiveAndReply
複製程式碼

解釋如下:端點通過自己的RPCEnv環境,向自己的Inbox中傳送訊息,然後交由Dispatch來進行訊息的處理,呼叫了端點自己的receiveAndReply方法

  • 這裡著重講一下MessageLoop是什麼時候啟動的,參照Dispatcher的程式碼段如下,一旦初始化就會啟動,因為是成員變數:

      private val threadpool: ThreadPoolExecutor = {
      val numThreads = nettyEnv.conf.getInt("spark.rpc.netty.dispatcher.numThreads",
        math.max(2, Runtime.getRuntime.availableProcessors()))
      val pool = ThreadUtils.newDaemonFixedThreadPool(numThreads, "dispatcher-event-loop")
      for (i <- 0 until numThreads) {
        pool.execute(new MessageLoop)
      }
       pool
     }
    複製程式碼
  • 接著講nettyRpcEnv是何時初始化的,Dispatcher是何時初始化的?

master初始化RpcEnv環境時,呼叫NettyRpcEnvFactory().create(config)進行初始化nettyRpcEnv,然後其成員變數Dispatcher開始初始化,然後Dispatcher內部成員變數threadpool開始啟動messageLoop,然後開始處理訊息,可謂是一環套一環啊。如下是Master端點初始化RPCEnv。

在NettyRpcEnv中,NettyRpcEnvFactory的create方法如下:

其中nettyRpcEnv.startServer,程式碼段如下,然後呼叫底層 transportContext.createServer來建立Server,並初始化netty 的 pipeline:

    server = transportContext.createServer(host, port, bootstraps)
    dispatcher.registerRpcEndpoint(
     RpcEndpointVerifier.NAME, new RpcEndpointVerifier(this, dispatcher))
複製程式碼

最終端點開始不斷向自己的Inboxz中傳送訊息即可,程式碼段如下:

    private def postMessage(
      endpointName: String,
      message: InboxMessage,
      callbackIfStopped: (Exception) => Unit): Unit = {
      error = synchronized {
      val data = endpoints.get(endpointName)
      if (stopped) {
           Some(new RpcEnvStoppedException())
      } else if (data == null) {
          Some(new SparkException(s"Could not find $endpointName."))
      } else {
      
         data.inbox.post(message)
         receivers.offer(data)
         
         None
      }
    }
複製程式碼
2.4.2 端點(Master)接收到訊息後,通過TransPortRequestHander接收後處理,扔進Inbox
- endpointRef(Worker) ->TransportChannelHandler -> channelRead0 -> TransPortRequestHander -> handle -> processRpcRequest ->NettyRpcHandler(在NettyRpcEnv中)  -> receive ->  internalReceive -> dispatcher.postToAll(RemoteProcessConnected(remoteEnvAddress)) (響應)-> dispatcher.postRemoteMessage(messageToDispatch, callback) (傳送遠端來的訊息放進inbox)-> postMessage -> inbox -> process
複製程式碼

如下圖展示了整個訊息接收到inbox的流程:

下圖展示了 TransportChannelHandler接收訊息:

    @Override
 public void channelRead0(ChannelHandlerContext ctx, Message request) throws Exception {
 if (request instanceof RequestMessage) {
  requestHandler.handle((RequestMessage) request);
} else {
  responseHandler.handle((ResponseMessage) request);
}
 }
複製程式碼

然後TransPortRequestHander來進行訊息匹配處理:

最終交給inbox的process方法,實際上由端點 endpoint.receiveAndReply(context)方法處理:

 /**
 * Process stored messages.
 */
 def process(dispatcher: Dispatcher): Unit = {
  var message: InboxMessage = null
    inbox.synchronized {
  if (!enableConcurrent && numActiveThreads != 0) {
    return
  }
  message = messages.poll()
  if (message != null) {
    numActiveThreads += 1
  } else {
    return
  }
}
while (true) {
  safelyCall(endpoint) {
    message match {
      case RpcMessage(_sender, content, context) =>
        try {
          endpoint.receiveAndReply(context).applyOrElse[Any, Unit](content, { msg =>
            throw new SparkException(s"Unsupported message $message from ${_sender}")
          })
        } catch {
          case NonFatal(e) =>
            context.sendFailure(e)
            // Throw the exception -- this exception will be caught by the safelyCall function.
            // The endpoint's onError function will be called.
            throw e
        }

      case OneWayMessage(_sender, content) =>
        endpoint.receive.applyOrElse[Any, Unit](content, { msg =>
          throw new SparkException(s"Unsupported message $message from ${_sender}")
        })

      case OnStart =>
        endpoint.onStart()
        if (!endpoint.isInstanceOf[ThreadSafeRpcEndpoint]) {
          inbox.synchronized {
            if (!stopped) {
              enableConcurrent = true
            }
          }
        }

      case OnStop =>
        val activeThreads = inbox.synchronized { inbox.numActiveThreads }
        assert(activeThreads == 1,
          s"There should be only a single active thread but found $activeThreads threads.")
        dispatcher.removeRpcEndpointRef(endpoint)
        endpoint.onStop()
        assert(isEmpty, "OnStop should be the last message")

      case RemoteProcessConnected(remoteAddress) =>
        endpoint.onConnected(remoteAddress)

      case RemoteProcessDisconnected(remoteAddress) =>
        endpoint.onDisconnected(remoteAddress)

      case RemoteProcessConnectionError(cause, remoteAddress) =>
        endpoint.onNetworkError(cause, remoteAddress)
    }
  }

  inbox.synchronized {
    // "enableConcurrent" will be set to false after `onStop` is called, so we should check it
    // every time.
    if (!enableConcurrent && numActiveThreads != 1) {
      // If we are not the only one worker, exit
      numActiveThreads -= 1
      return
    }
    message = messages.poll()
    if (message == null) {
      numActiveThreads -= 1
      return
    }
  }
}
複製程式碼

}

3 結語

本文花了將近兩天時間進行剖析Spark的 Rpc 工作原理,真是不容易,關鍵是你看懂了嗎?歡迎評論

秦凱新