1. 程式人生 > >dd大牛的揹包九講

dd大牛的揹包九講

P01: 01揹包問題 
題目 
有N件物品和一個容量為V的揹包。第i件物品的費用是c[i],價值是w[i]。求解將哪些物品裝入揹包可使這些物品的費用總和不超過揹包容量,且價值總和最大。 

基本思路 
這是最基礎的揹包問題,特點是:每種物品僅有一件,可以選擇放或不放。 

用子問題定義狀態:即f[i][v]表示前i件物品恰放入一個容量為v的揹包可以獲得的最大價值。則其狀態轉移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。 

這個方程非常重要,基本上所有跟揹包相關的問題的方程都是由它衍生出來的。所以有必要將它詳細解釋一下:“將前i件物品放入容量為v的揹包中”這個子問題,若只考慮第i件物品的策略(放或不放),那麼就可以轉化為一個只牽扯前i-1件物品的問題。如果不放第i件物品,那麼問題就轉化為“前i-1件物品放入容量為v的揹包中”;如果放第i件物品,那麼問題就轉化為“前i-1件物品放入剩下的容量為v-c[i]的揹包中”,此時能獲得的最大價值就是f [i-1][v-c[i]]再加上通過放入第i件物品獲得的價值w[i]。 

注意f[i][v]有意義當且僅當存在一個前i件物品的子集,其費用總和為v。所以按照這個方程遞推完畢後,最終的答案並不一定是f[N] [V],而是f[N][0..V]的最大值。如果將狀態的定義中的“恰”字去掉,在轉移方程中就要再加入一項f[i][v-1],這樣就可以保證f[N] [V]就是最後的答案。至於為什麼這樣就可以,由你自己來體會了。 

優化空間複雜度 
以上方法的時間和空間複雜度均為O(N*V),其中時間複雜度基本已經不能再優化了,但空間複雜度卻可以優化到O(V)。 

先考慮上面講的基本思路如何實現,肯定是有一個主迴圈i=1..N,每次算出來二維陣列f[i][0..V]的所有值。那麼,如果只用一個數組f [0..V],能不能保證第i次迴圈結束後f[v]中表示的就是我們定義的狀態f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1] [v-c[i]]兩個子問題遞推而來,能否保證在推f[i][v]時(也即在第i次主迴圈中推f[v]時)能夠得到f[i-1][v]和f[i-1][v -c[i]]的值呢?事實上,這要求在每次主迴圈中我們以v=V..0的順序推f[v],這樣才能保證推f[v]時f[v-c[i]]儲存的是狀態f[i -1][v-c[i]]的值。虛擬碼如下: 

for i=1..N 
for v=V..0 
f[v]=max{f[v],f[v-c[i]]+w[i]}; 

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相當於我們的轉移方程f[i][v]=max{f[i-1][v],f[i- 1][v-c[i]]},因為現在的f[v-c[i]]就相當於原來的f[i-1][v-c[i]]。如果將v的迴圈順序從上面的逆序改成順序的話,那麼則成了f[i][v]由f[i][v-c[i]]推知,與本題意不符,但它卻是另一個重要的揹包問題P02最簡捷的解決方案,故學習只用一維陣列解01揹包問題是十分必要的。 

總結 
01揹包問題是最基本的揹包問題,它包含了揹包問題中設計狀態、方程的最基本思想,另外,別的型別的揹包問題往往也可以轉換成01揹包問題求解。故一定要仔細體會上面基本思路的得出方法,狀態轉移方程的意義,以及最後怎樣優化的空間複雜度。 

P02: 完全揹包問題 
題目 
有N種物品和一個容量為V的揹包,每種物品都有無限件可用。第i種物品的費用是c[i],價值是w[i]。求解將哪些物品裝入揹包可使這些物品的費用總和不超過揹包容量,且價值總和最大。 

基本思路 
這個問題非常類似於01揹包問題,所不同的是每種物品有無限件。也就是從每種物品的角度考慮,與它相關的策略已並非取或不取兩種,而是有取0件、取1件、取2件……等很多種。如果仍然按照解01揹包時的思路,令f[i][v]表示前i種物品恰放入一個容量為v的揹包的最大權值。仍然可以按照每種物品不同的策略寫出狀態轉移方程,像這樣:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<= v}。這跟01揹包問題一樣有O(N*V)個狀態需要求解,但求解每個狀態的時間則不是常數了,求解狀態f[i][v]的時間是O(v/c[i]),總的複雜度是超過O(VN)的。 

將01揹包問題的基本思路加以改進,得到了這樣一個清晰的方法。這說明01揹包問題的方程的確是很重要,可以推及其它型別的揹包問題。但我們還是試圖改進這個複雜度。 

一個簡單有效的優化 
完全揹包問題有一個很簡單有效的優化,是這樣的:若兩件物品i、j滿足c[i]<=c[j]且w[i]>=w[j],則將物品j去掉,不用考慮。這個優化的正確性顯然:任何情況下都可將價值小費用高得j換成物美價廉的i,得到至少不會更差的方案。對於隨機生成的資料,這個方法往往會大大減少物品的件數,從而加快速度。然而這個並不能改善最壞情況的複雜度,因為有可能特別設計的資料可以一件物品也去不掉。 

轉化為01揹包問題求解 
既然01揹包問題是最基本的揹包問題,那麼我們可以考慮把完全揹包問題轉化為01揹包問題來解。最簡單的想法是,考慮到第i種物品最多選V/c [i]件,於是可以把第i種物品轉化為V/c[i]件費用及價值均不變的物品,然後求解這個01揹包問題。這樣完全沒有改進基本思路的時間複雜度,但這畢竟給了我們將完全揹包問題轉化為01揹包問題的思路:將一種物品拆成多件物品。 

更高效的轉化方法是:把第i種物品拆成費用為c[i]*2^k、價值為w[i]*2^k的若干件物品,其中k滿足c[i]*2^k<V。這是二進位制的思想,因為不管最優策略選幾件第i種物品,總可以表示成若干個2^k件物品的和。這樣把每種物品拆成O(log(V/c[i]))件物品,是一個很大的改進。但我們有更優的O(VN)的演算法。 * O(VN)的演算法這個演算法使用一維陣列,先看虛擬碼: <pre class"example"> for i=1..N for v=0..V f[v]=max{f[v],f[v-c[i]]+w[i]}; 



你會發現,這個虛擬碼與P01的虛擬碼只有v的迴圈次序不同而已。為什麼這樣一改就可行呢?首先想想為什麼P01中要按照v=V..0的逆序來迴圈。這是因為要保證第i次迴圈中的狀態f[i][v]是由狀態f[i-1][v-c[i]]遞推而來。換句話說,這正是為了保證每件物品只選一次,保證在考慮“選入第i件物品”這件策略時,依據的是一個絕無已經選入第i件物品的子結果f[i-1][v-c[i]]。而現在完全揹包的特點恰是每種物品可選無限件,所以在考慮“加選一件第i種物品”這種策略時,卻正需要一個可能已選入第i種物品的子結果f[i][v-c[i]],所以就可以並且必須採用v= 0..V的順序迴圈。這就是這個簡單的程式為何成立的道理。 

這個演算法也可以以另外的思路得出。例如,基本思路中的狀態轉移方程可以等價地變形成這種形式:f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]},將這個方程用一維陣列實現,便得到了上面的虛擬碼。 

總結 
完全揹包問題也是一個相當基礎的揹包問題,它有兩個狀態轉移方程,分別在“基本思路”以及“O(VN)的演算法“的小節中給出。希望你能夠對這兩個狀態轉移方程都仔細地體會,不僅記住,也要弄明白它們是怎麼得出來的,最好能夠自己想一種得到這些方程的方法。事實上,對每一道動態規劃題目都思考其方程的意義以及如何得來,是加深對動態規劃的理解、提高動態規劃功力的好方法。 

P03: 多重揹包問題 
題目 
有N種物品和一個容量為V的揹包。第i種物品最多有n[i]件可用,每件費用是c[i],價值是w[i]。求解將哪些物品裝入揹包可使這些物品的費用總和不超過揹包容量,且價值總和最大。 

基本演算法 
這題目和完全揹包問題很類似。基本的方程只需將完全揹包問題的方程略微一改即可,因為對於第i種物品有n[i]+1種策略:取0件,取1件……取 n[i]件。令f[i][v]表示前i種物品恰放入一個容量為v的揹包的最大權值,則:f[i][v]=max{f[i-1][v-k*c[i]]+ k*w[i]|0<=k<=n[i]}。複雜度是O(V*∑n[i])。 

轉化為01揹包問題 
另一種好想好寫的基本方法是轉化為01揹包求解:把第i種物品換成n[i]件01揹包中的物品,則得到了物品數為∑n[i]的01揹包問題,直接求解,複雜度仍然是O(V*∑n[i])。 

但是我們期望將它轉化為01揹包問題之後能夠像完全揹包一樣降低複雜度。仍然考慮二進位制的思想,我們考慮把第i種物品換成若干件物品,使得原問題中第i種物品可取的每種策略——取0..n[i]件——均能等價於取若干件代換以後的物品。另外,取超過n[i]件的策略必不能出現。 

方法是:將第i種物品分成若干件物品,其中每件物品有一個係數,這件物品的費用和價值均是原來的費用和價值乘以這個係數。使這些係數分別為 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是滿足n[i]-2^k+1>0的最大整數。例如,如果n[i]為13,就將這種物品分成係數分別為1,2,4,6的四件物品。 

分成的這幾件物品的係數和為n[i],表明不可能取多於n[i]件的第i種物品。另外這種方法也能保證對於0..n[i]間的每一個整數,均可以用若干個係數的和表示,這個證明可以分0..2^k-1和2^k..n[i]兩段來分別討論得出,並不難,希望你自己思考嘗試一下。 

這樣就將第i種物品分成了O(log n[i])種物品,將原問題轉化為了複雜度為O(V*∑log n[i])的01揹包問題,是很大的改進。 

O(VN)的演算法 
多重揹包問題同樣有O(VN)的演算法。這個演算法基於基本演算法的狀態轉移方程,但應用單調佇列的方法使每個狀態的值可以以均攤O(1)的時間求解。由於用單調佇列優化的DP已超出了NOIP的範圍,故本文不再展開講解。我最初瞭解到這個方法是在樓天成的“男人八題”幻燈片上。 

小結 
這裡我們看到了將一個演算法的複雜度由O(V*∑n[i])改進到O(V*∑log n[i])的過程,還知道了存在應用超出NOIP範圍的知識的O(VN)演算法。希望你特別注意“拆分物品”的思想和方法,自己證明一下它的正確性,並用儘量簡潔的程式來實現。 



P04: 混合三種揹包問題 
問題 
如果將P01、P02、P03混合起來。也就是說,有的物品只可以取一次(01揹包),有的物品可以取無限次(完全揹包),有的物品可以取的次數有一個上限(多重揹包)。應該怎麼求解呢? 

01揹包與完全揹包的混合 
考慮到在P01和P02中最後給出的虛擬碼只有一處不同,故如果只有兩類物品:一類物品只能取一次,另一類物品可以取無限次,那麼只需在對每個物品應用轉移方程時,根據物品的類別選用順序或逆序的迴圈即可,複雜度是O(VN)。虛擬碼如下: 

for i=1..N 
if 第i件物品是01揹包 
for v=V..0 
f[v]=max{f[v],f[v-c[i]]+w[i]}; 
else if 第i件物品是完全揹包 
for v=0..V 
f[v]=max{f[v],f[v-c[i]]+w[i]}; 

再加上多重揹包 
如果再加上有的物品最多可以取有限次,那麼原則上也可以給出O(VN)的解法:遇到多重揹包型別的物品用單調佇列解即可。但如果不考慮超過NOIP範圍的演算法的話,用P03中將每個這類物品分成O(log n[i])個01揹包的物品的方法也已經很優了。 

小結 
有人說,困難的題目都是由簡單的題目疊加而來的。這句話是否公理暫且存之不論,但它在本講中已經得到了充分的體現。本來01揹包、完全揹包、多重揹包都不是什麼難題,但將它們簡單地組合起來以後就得到了這樣一道一定能嚇倒不少人的題目。但只要基礎紮實,領會三種基本揹包問題的思想,就可以做到把困難的題目拆分成簡單的題目來解決。 
P05: 二維費用的揹包問題 
問題 
二維費用的揹包問題是指:對於每件物品,具有兩種不同的費用;選擇這件物品必須同時付出這兩種代價;對於每種代價都有一個可付出的最大值(揹包容量)。問怎樣選擇物品可以得到最大的價值。設這兩種代價分別為代價1和代價2,第i件物品所需的兩種代價分別為a[i]和b[i]。兩種代價可付出的最大值(兩種揹包容量)分別為V和U。物品的價值為w[i]。 

演算法 
費用加了一維,只需狀態也加一維即可。設f[i][v][u]表示前i件物品付出兩種代價分別為v和u時可獲得的最大價值。狀態轉移方程就是:f [i][v][u]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+w[i]}。如前述方法,可以只使用二維的陣列:當每件物品只可以取一次時變數v和u採用順序的迴圈,當物品有如完全揹包問題時採用逆序的迴圈。當物品有如多重揹包問題時拆分物品。 

物品總個數的限制 
有時,“二維費用”的條件是以這樣一種隱含的方式給出的:最多隻能取M件物品。這事實上相當於每件物品多了一種“件數”的費用,每個物品的件數費用均為1,可以付出的最大件數費用為M。換句話說,設f[v][m]表示付出費用v、最多選m件時可得到的最大價值,則根據物品的型別(01、完全、多重)用不同的方法迴圈更新,最後在f[0..V][0..M]範圍內尋找答案。 

另外,如果要求“恰取M件物品”,則在f[0..V][M]範圍內尋找答案。 

小結 
事實上,當發現由熟悉的動態規劃題目變形得來的題目時,在原來的狀態中加一緯以滿足新的限制是一種比較通用的方法。希望你能從本講中初步體會到這種方法。 

P06: 分組的揹包問題 
問題 
有N件物品和一個容量為V的揹包。第i件物品的費用是c[i],價值是w[i]。這些物品被劃分為若干組,每組中的物品互相沖突,最多選一件。求解將哪些物品裝入揹包可使這些物品的費用總和不超過揹包容量,且價值總和最大。 

演算法 
這個問題變成了每組物品有若干種策略:是選擇本組的某一件,還是一件都不選。也就是說設f[k][v]表示前k組物品花費費用v能取得的最大權值,則有f[k][v]=max{f[k-1][v],f[k-1][v-c[i]]+w[i]|物品i屬於第k組}。 

使用一維陣列的虛擬碼如下: 

for 所有的組k 
for 所有的i屬於組k 
for v=V..0 
f[v]=max{f[v],f[v-c[i]]+w[i]} 

另外,顯然可以對每組中的物品應用P02中“一個簡單有效的優化”。 

小結 
分組的揹包問題將彼此互斥的若干物品稱為一個組,這建立了一個很好的模型。不少揹包問題的變形都可以轉化為分組的揹包問題(例如P07),由分組的揹包問題進一步可定義“泛化物品”的概念,十分有利於解題。 

P07: 有依賴的揹包問題 
簡化的問題 
這種揹包問題的物品間存在某種“依賴”的關係。也就是說,i依賴於j,表示若選物品i,則必須選物品j。為了簡化起見,我們先設沒有某個物品既依賴於別的物品,又被別的物品所依賴;另外,沒有某件物品同時依賴多件物品。 

演算法 
這個問題由NOIP2006金明的預算方案一題擴充套件而來。遵從該題的提法,將不依賴於別的物品的物品稱為“主件”,依賴於某主件的物品稱為“附件”。由這個問題的簡化條件可知所有的物品由若干主件和依賴於每個主件的一個附件集合組成。 

按照揹包問題的一般思路,僅考慮一個主件和它的附件集合。可是,可用的策略非常多,包括:一個也不選,僅選擇主件,選擇主件後再選擇一個附件,選擇主件後再選擇兩個附件……無法用狀態轉移方程來表示如此多的策略。(事實上,設有n個附件,則策略有2^n+1個,為指數級。) 

考慮到所有這些策略都是互斥的(也就是說,你只能選擇一種策略),所以一個主件和它的附件集合實際上對應於P06中的一個物品組,每個選擇了主件又選擇了若干個附件的策略對應於這個物品組中的一個物品,其費用和價值都是這個策略中的物品的值的和。但僅僅是這一步轉化並不能給出一個好的演算法,因為物品組中的物品還是像原問題的策略一樣多。 

再考慮P06中的一句話:可以對每組中的物品應用P02中“一個簡單有效的優化”。這提示我們,對於一個物品組中的物品,所有費用相同的物品只留一個價值最大的,不影響結果。所以,我們可以對主件i的“附件集合”先進行一次01揹包,得到費用依次為0..V-c[i]所有這些值時相應的最大價值f'[0..V-c[i]]。那麼這個主件及它的附件集合相當於V-c[i]+1個物品的物品組,其中費用為c[i]+k的物品的價值為f'[k]+w[i]。也就是說原來指數級的策略中有很多策略都是冗餘的,通過一次01揹包後,將主件i轉化為 V-c[i]+1個物品的物品組,就可以直接應用P06的演算法解決問題了。 

更一般的問題 
更一般的問題是:依賴關係以圖論中“森林”的形式給出(森林即多叉樹的集合),也就是說,主件的附件仍然可以具有自己的附件集合,限制只是每個物品最多隻依賴於一個物品(只有一個主件)且不出現迴圈依賴。 

解決這個問題仍然可以用將每個主件及其附件集合轉化為物品組的方式。唯一不同的是,由於附件可能還有附件,就不能將每個附件都看作一個一般的01 揹包中的物品了。若這個附件也有附件集合,則它必定要被先轉化為物品組,然後用分組的揹包問題解出主件及其附件集合所對應的附件組中各個費用的附件所對應的價值。 

事實上,這是一種樹形DP,其特點是每個父節點都需要對它的各個兒子的屬性進行一次DP以求得自己的相關屬性。這已經觸及到了“泛化物品”的思想。看完P08後,你會發現這個“依賴關係樹”每一個子樹都等價於一件泛化物品,求某節點為根的子樹對應的泛化物品相當於求其所有兒子的對應的泛化物品之和。 

小結 
NOIP2006的那道揹包問題我做得很失敗,寫了上百行的程式碼,卻一分未得。後來我通過思考發現通過引入“物品組”和“依賴”的概念可以加深對這題的理解,還可以解決它的推廣問題。用物品組的思想考慮那題中極其特殊的依賴關係:物品不能既作主件又作附件,每個主件最多有兩個附件,可以發現一個主件和它的兩個附件等價於一個由四個物品組成的物品組,這便揭示了問題的某種本質。 

我想說:失敗不是什麼丟人的事情,從失敗中全無收穫才是。 

P08: 泛化物品 
定義 
考慮這樣一種物品,它並沒有固定的費用和價值,而是它的價值隨著你分配給它的費用而變化。這就是泛化物品的概念。 

更嚴格的定義之。在揹包容量為V的揹包問題中,泛化物品是一個定義域為0..V中的整數的函式h,當分配給它的費用為v時,能得到的價值就是h(v)。 

這個定義有一點點抽象,另一種理解是一個泛化物品就是一個數組h[0..V],給它費用v,可得到價值h[V]。 

一個費用為c價值為w的物品,如果它是01揹包中的物品,那麼把它看成泛化物品,它就是除了h(c)=w其它函式值都為0的一個函式。如果它是完全揹包中的物品,那麼它可以看成這樣一個函式,僅當v被c整除時有h(v)=v/c*w,其它函式值均為0。如果它是多重揹包中重複次數最多為n的物品,那麼它對應的泛化物品的函式有h(v)=v/c*w僅當v被c整除且v/c<=n,其它情況函式值均為0。 

一個物品組可以看作一個泛化物品h。對於一個0..V中的v,若物品組中不存在費用為v的的物品,則h(v)=0,否則h(v)為所有費用為v的物品的最大價值。P07中每個主件及其附件集合等價於一個物品組,自然也可看作一個泛化物品。 

泛化物品的和 
如果面對兩個泛化物品h和l,要用給定的費用從這兩個泛化物品中得到最大的價值,怎麼求呢?事實上,對於一個給定的費用v,只需列舉將這個費用如何分配給兩個泛化物品就可以了。同樣的,對於0..V的每一個整數v,可以求得費用v分配到h和l中的最大價值f(v)。也即f(v)=max{h(k) +l(v-k)|0<=k<=v}。可以看到,f也是一個由泛化物品h和l決定的定義域為0..V的函式,也就是說,f是一個由泛化物品h和 l決定的泛化物品。 

由此可以定義泛化物品的和:h、l都是泛化物品,若泛化物品f滿足f(v)=max{h(k)+l(v-k)|0<=k<=v},則稱f是h與l的和,即f=h+l。這個運算的時間複雜度是O(V^2)。 

泛化物品的定義表明:在一個揹包問題中,若將兩個泛化物品代以它們的和,不影響問題的答案。事實上,對於其中的物品都是泛化物品的揹包問題,求它的答案的過程也就是求所有這些泛化物品之和的過程。設此和為s,則答案就是s[0..V]中的最大值。 

揹包問題的泛化物品 
一個揹包問題中,可能會給出很多條件,包括每種物品的費用、價值等屬性,物品之間的分組、依賴等關係等。但肯定能將問題對應於某個泛化物品。也就是說,給定了所有條件以後,就可以對每個非負整數v求得:若揹包容量為v,將物品裝入揹包可得到的最大價值是多少,這可以認為是定義在非負整數集上的一件泛化物品。這個泛化物品——或者說問題所對應的一個定義域為非負整數的函式——包含了關於問題本身的高度濃縮的資訊。一般而言,求得這個泛化物品的一個子域(例如0..V)的值之後,就可以根據這個函式的取值得到揹包問題的最終答案。 

綜上所述,一般而言,求解揹包問題,即求解這個問題所對應的一個函式,即該問題的泛化物品。而求解某個泛化物品的一種方法就是將它表示為若干泛化物品的和然後求之。 

小結 
本講可以說都是我自己的原創思想。具體來說,是我在學習函數語言程式設計的 Scheme 語言時,用函式程式設計的眼光審視各類揹包問題得出的理論。這一講真的很抽象,也許在“模型的抽象程度”這一方面已經超出了NOIP的要求,所以暫且看不懂也沒關係。相信隨著你的OI之路逐漸延伸,有一天你會理解的。 

我想說:“思考”是一個OIer最重要的品質。簡單的問題,深入思考以後,也能發現更多。 

P09: 揹包問題問法的變化 
以上涉及的各種揹包問題都是要求在揹包容量(費用)的限制下求可以取到的最大價值,但揹包問題還有很多種靈活的問法,在這裡值得提一下。但是我認為,只要深入理解了求揹包問題最大價值的方法,即使問法變化了,也是不難想出演算法的。 

例如,求解最多可以放多少件物品或者最多可以裝滿多少揹包的空間。這都可以根據具體問題利用前面的方程求出所有狀態的值(f陣列)之後得到。 

還有,如果要求的是“總價值最小”“總件數最小”,只需簡單的將上面的狀態轉移方程中的max改成min即可。 

下面說一些變化更大的問法。 

輸出方案 
一般而言,揹包問題是要求一個最優值,如果要求輸出這個最優值的方案,可以參照一般動態規劃問題輸出方案的方法:記錄下每個狀態的最優值是由狀態轉移方程的哪一項推出來的,換句話說,記錄下它是由哪一個策略推出來的。便可根據這條策略找到上一個狀態,從上一個狀態接著向前推即可。 

還是以01揹包為例,方程為f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。再用一個數組g[i] [v],設g[i][v]=0表示推出f[i][v]的值時是採用了方程的前一項(也即f[i][v]=f[i-1][v]),g[i][v]表示採用了方程的後一項。注意這兩項分別表示了兩種策略:未選第i個物品及選了第i個物品。那麼輸出方案的虛擬碼可以這樣寫(設最終狀態為f[N][V]): 

i=N 
v=V 
while(i>0) 
if(g[i][v]==0) 
print "未選第i項物品" 
else if(g[i][v]==1) 
print "選了第i項物品" 
v=v-c[i] 

另外,採用方程的前一項或後一項也可以在輸出方案的過程中根據f[i][v]的值實時地求出來,也即不須紀錄g陣列,將上述程式碼中的g[i] [v]==0改成f[i][v]==f[i-1][v],g[i][v]==1改成f[i][v]==f[i-1][v-c[i]]+w[i]也可。 

輸出字典序最小的最優方案 
這裡“字典序最小”的意思是1..N號物品的選擇方案排列出來以後字典序最小。以輸出01揹包最小字典序的方案為例。 

一般而言,求一個字典序最小的最優方案,只需要在轉移時注意策略。首先,子問題的定義要略改一些。我們注意到,如果存在一個選了物品1的最優方案,那麼答案一定包含物品1,原問題轉化為一個揹包容量為v-c[1],物品為2..N的子問題。反之,如果答案不包含物品1,則轉化成揹包容量仍為V,物品為2..N的子問題。不管答案怎樣,子問題的物品都是以i..N而非前所述的1..i的形式來定義的,所以狀態的定義和轉移方程都需要改一下。但也許更簡易的方法是先把物品逆序排列一下,以下按物品已被逆序排列來敘述。 

在這種情況下,可以按照前面經典的狀態轉移方程來求值,只是輸出方案的時候要注意:從N到1輸入時,如果f[i][v]==f[i-v]及f[i][v]==f[i-1][f-c[i]]+w[i]同時成立,應該按照後者(即選擇了物品i)來輸出方案。 

求方案總數 
對於一個給定了揹包容量、物品費用、物品間相互關係(分組、依賴等)的揹包問題,除了再給定每個物品的價值後求可得到的最大價值外,還可以得到裝滿揹包或將揹包裝至某一指定容量的方案總數。 

對於這類改變問法的問題,一般只需將狀態轉移方程中的max改成sum即可。例如若每件物品均是01揹包中的物品,轉移方程即為f[i][v]=sum{f[i-1][v],f[i-1][v-c[i]]+w[i]},初始條件f[0][0]=1。 

事實上,這樣做可行的原因在於狀態轉移方程已經考察了所有可能的揹包組成方案。 

最優方案的總數 
這裡的最優方案是指物品總價值最大的方案。還是以01揹包為例。 

結合求最大總價值和方案總數兩個問題的思路,最優方案的總數可以這樣求:f[i][v]意義同前述,g[i][v]表示這個子問題的最優方案的總數,則在求f[i][v]的同時求g[i][v]的虛擬碼如下: 

for i=1..N 
for v=0..V 
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} 
g[i][v]=0 
if(f[i][v]==f[i-1][v]) 
inc(g[i][v],g[i-1][v] 
if(f[i][v]==f[i-1][v-c[i]]+w[i]) 
inc(g[i][v],g[i-1][v-c[i]]) 

如果你是第一次看到這樣的問題,請仔細體會上面的虛擬碼。 

小結 
顯然,這裡不可能窮盡揹包類動態規劃問題所有的問法。甚至還存在一類將揹包類動態規劃問題與其它領域(例如數論、圖論)結合起來的問題,在這篇論揹包問題的專文中也不會論及。但只要深刻領會前述所有類別的揹包問題的思路和狀態轉移方程,遇到其它的變形問法,只要題目難度還屬於NOIP,應該也不難想出演算法。 

觸類旁通、舉一反三,應該也是一個OIer應有的品質吧。

 

分類: 揹包問題