OpenCV 繪製正多邊形
阿新 • • 發佈:2018-11-03
OpenCV 繪製正多邊形
#include <iostream> #include <opencv2\core\core.hpp> #include <opencv2\opencv.hpp> #include <opencv2\highgui\highgui.hpp> #include <opencv2\contrib\contrib.hpp> #include <fstream> using namespace cv; using namespace std; void DeleteRepetition(vector<Point> &Data) { vector<Point>::iterator it, it1; for (it = ++Data.begin(); it != Data.end();) { it1 = find(Data.begin(), it, *it); if (it1 != it) it = Data.erase(it); else it++; } } void Patterns(Mat *src, vector<Point> Dots, int fill) { DeleteRepetition(Dots); if (fill == -1) { Point *ImgDot = new Point(Dots.size()); for (int i = 0; i < Dots.size(); i++) { ImgDot[i] = Dots[i]; } const Point* ppt = ImgDot; int npt = Dots.size(); RNG &rng = theRNG(); Scalar color = Scalar(rng.uniform(100, 255), rng.uniform(100, 255), rng.uniform(100, 255)); cv::fillPoly(*src, &ppt, &npt, 1, color); } else { Dots.push_back(Dots[0]); RNG &rng = theRNG(); Scalar color = Scalar(rng.uniform(100, 255), rng.uniform(100, 255), rng.uniform(100, 255)); for (int i = 0; i < Dots.size() - 1; i++) { line(*src, Dots[i], Dots[i + 1], color, fill); } } } // https://www.w3cplus.com/canvas/drawing-regular-polygons.html // http://www.cnblogs.com/xcywt/p/9456526.html // 影象、中心點、半徑、邊數、旋轉角度、線寬 void EquilateralPolygon(Mat *src, Point origin, int radius, int brim, int rotate, int fill) { if (brim < 3) return; if (rotate > 360) return; #define PI 3.14159265 #define ROTATE_COUNT 180 double nAgree = 360 / brim; // 計算旋轉角度 double a = radius * cos(PI / brim); // 計算垂直向下的長度 double s = 2 * radius * sin(PI / brim); // 計算邊長 vector<Point> Dots; Point D1, D2; D1.x = origin.x + radius*cos(-(((180 - nAgree) / 2) + rotate) * PI / 180); D1.y = origin.y - radius*sin(-(((180 - nAgree) / 2) + rotate) * PI / 180); D2.x = origin.x + radius*cos(-(((180 - nAgree) / 2) + nAgree + rotate) * PI / 180); D2.y = origin.y - radius*sin(-(((180 - nAgree) / 2) + nAgree + rotate) * PI / 180); // 第一條邊的兩個點 Dots.push_back(D1); Dots.push_back(D2); for (int i = 0; i < brim - 2; i++) { double dSinRot = sin((nAgree * (i + 1)) * PI / 180); double dCosRot = cos((nAgree * (i + 1)) * PI / 180); int x = origin.x + dCosRot * (D2.x - origin.x) - dSinRot * (D2.y - origin.y); int y = origin.y + dSinRot * (D2.x - origin.x) + dCosRot * (D2.y - origin.y); Dots.push_back(Point(x, y)); } Patterns(src, Dots, fill); Dots.clear(); } int main() { Mat Img = Mat::zeros(800, 800, CV_8UC3); Point O = Point(400, 400); circle(Img, O, 2, Scalar(0, 0, 255), -1); //中心點 EquilateralPolygon(&Img, O, 100, 3, 0, -1); // 填充的正三角形 EquilateralPolygon(&Img, O, 200, 3, 0, 1); // 不填充的正三角形 EquilateralPolygon(&Img, O, 200, 3, 30, 1); // 不填充的正三角形,順時針旋轉30度 EquilateralPolygon(&Img, O, 200, 3, 60, 1); // 不填充的正三角形,順時針旋轉60度 EquilateralPolygon(&Img, O, 200, 3, 90, 1); // 不填充的正三角形,順時針旋轉90度 EquilateralPolygon(&Img, O, 200, 3, 120, 1);// 不填充的正三角形,順時針旋轉120度 EquilateralPolygon(&Img, O, 200, 3, 150, 1);// 不填充的正三角形,順時針旋轉150度 EquilateralPolygon(&Img, O, 200, 3, 180, 1);// 不填充的正三角形,順時針旋轉180度 EquilateralPolygon(&Img, O, 230, 4, 0, 2); // 不填充的正四邊形 EquilateralPolygon(&Img, O, 250, 5, 0, 3); // 不填充的正五邊形 EquilateralPolygon(&Img, O, 270, 6, 0, 4); // 不填充的正六邊形 EquilateralPolygon(&Img, O, 290, 7, 0, 5); // 不填充的正七邊形 EquilateralPolygon(&Img, O, 310, 8, 0, 6); // 不填充的正八邊形 EquilateralPolygon(&Img, O, 330, 9, 0, 7); // 不填充的正九邊形 EquilateralPolygon(&Img, O, 350, 10, 0, 8);// 不填充的正十邊形 imshow("正多邊形", Img); waitKey(0); return 0; }
效果如下: