機器學習歸一化(附Python實現原始碼)
阿新 • • 發佈:2018-11-05
# -*- coding: utf-8 -*- import inspect import math import numpy as np from sklearn import preprocessing def max_min_normalization(data_list): """ 利用最大最小數將一組資料進行歸一化輸出 x_new = (x - min) / (max - min) :param data_list: :return: """ normalized_list = [] max_min_interval = max(data_list) - min(data_list) for data in data_list: data = float(data) new_data = (data - min(data_list)) / max_min_interval normalized_list.append(round(new_data, 3)) return normalized_list def mean_normalization(data_list): """ 利用平均數將一組資料進行標準化輸出 標準化的結果不一定是在0,1之間 x_new = (x - mean) / (max - min) :param data_list: :return: """ normalized_list = [] mean = sum(data_list) / len(data_list) max_min_interval = max(data_list) - min(data_list) for data in data_list: data = float(data) new_data = (data - mean) / max_min_interval normalized_list.append(round(new_data, 3)) return normalized_list def zscores_normalization(data_list): """ 利用z-scores方法針對資料進行標準化 :param data_list: :return: """ normalized_list = [] mean = sum(data_list, 0.0) / len(data_list) var_lst = [] for data in data_list: var_lst.append((float(data) - mean) ** 2) std_value = math.sqrt(sum(var_lst) / len(var_lst)) for data in data_list: normalized_list.append(round((data - mean) / std_value, 3)) return normalized_list def max_min_normalization_using_numpy(data_list): """ 用資料處理包numpy歸一化 :param data_list: :return: """ normalized_list = [] max = np.max(data_list) min = np.min(data_list) for data in data_list: new_data = (float(data) - min) / (max - min) normalized_list.append(round(new_data, 3)) return normalized_list def zscores_normalization_using_numpy(data_list): """ 利用numpy中現有的方法計算標準差和平均數,然後用z-scores方法針對資料進行標準化 :param data_list: :return: """ normalized_list = [] mean = np.mean(data_list) std = np.std(data_list) for data in data_list: normalized_list.append(round((data - mean) / std, 3)) return normalized_list def normalize_data_using_sk(data_list): """ 利用sklearn學習庫自帶的歸一方法實現 :param data_list: :return: """ data_array = np.asarray(data_list, 'float').reshape(1, -1) new_data = preprocessing.minmax_scale(data_array, axis=1) return np.round(new_data, 3)[0, :] if __name__ == '__main__': data_list = np.random.randint(1, 20, 10) data = globals().copy() for key in data: if inspect.isfunction(data[key]): res = data[key](data_list) print '%s:\n%s' % (key, res)
執行結果:
zscores_normalization_using_numpy:
[-1.528, 1.382, -0.255, 1.564, -0.073, 0.291, 0.837, -1.346, -0.8, -0.073]
max_min_normalization:
[0.0, 0.941, 0.412, 1.0, 0.471, 0.588, 0.765, 0.059, 0.235, 0.471]
normalize_data_using_sk:
[0. 0.941 0.412 1. 0.471 0.588 0.765 0.059 0.235 0.471]
max_min_normalization_using_numpy:
[0.0, 0.941, 0.412, 1.0, 0.471, 0.588, 0.765, 0.059, 0.235, 0.471]
mean_normalization:
[-0.471, 0.471, -0.059, 0.529, 0.0, 0.118, 0.294, -0.412, -0.235, 0.0]
zscores_normalization:
[-1.528, 1.382, -0.255, 1.564, -0.073, 0.291, 0.837, -1.346, -0.8, -0.073]