1. 程式人生 > >【模板】嚴格次小生成樹[BJWC2010] --- kruskal重構樹 + LCA

【模板】嚴格次小生成樹[BJWC2010] --- kruskal重構樹 + LCA

傳送門:洛谷4180


題目大意

給出 n n 個點, m m 條邊的無向圖,求嚴格次小生成樹.
  即保證 次小生成樹的邊權和 >

> 最小生成樹的邊權和


分析

首先提供一條定理:次小生成樹一定由最小生成樹經過”邊交換”(加上一條邊再刪去一條邊)得到.
  因此考慮先用 kruskal求出一顆 M S T MST

,然後列舉剩下的邊,依次加入再刪去 M S T MST 上一條邊(保證這條邊的權值嚴格小於加入邊權值,且最大)
  問題的關鍵就在於如何求出要刪去的邊.
   \to
首先忽略掉"嚴格小於"這一條件的話,就只要求 M S T MST 上兩點間路徑上的最大值,對此可以考慮 用kruskal 重構樹來簡化一下(普通的LCA也行,只不過還要再掃一遍)
   \to M S T MST 不唯一的話,還是求得 L C A LCA 後再掃一遍吧(在kruskal重構樹上,兩葉子節點之間的點權,即為路徑上的邊權)

程式碼

洛谷上開 O 2 O_2 388 m s 388ms ,暫時 r a n k 1 rank1

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>

#define IL inline

using namespace std;
typedef long long ll;

IL int read()
{
    int sum = 0;
    bool k = 1;
    char c = getchar();
    for(;'0' > c || c > '9'; c = getchar())
    if(c == '-') k = 0;
    for(;'0' <= c && c <= '9'; c = getchar())
        sum = sum * 10 + (c - '0');
    return k ? sum : -sum;
}

int n, m;

struct Side
{
    int u, v, w;
    bool f;
    bool operator < (const Side &b) const
    {	
        return w < b.w;
    }
}side[300005];

int fa[200005][18];
int dep[200005];
int weight[200005];
int lg[200005];

int pa[200005];
IL int find(int x) { return pa[x] = (pa[x] == x ? x : find(pa[x])); }
IL bool join(int x, int y, int z, int &T)
{
    int x1 = find(x), y1 = find(y);
    if(x1 == y1) return 0;
    ++T;
    fa[x1][0] = fa[y1][0] = T + n;
    weight[T + n] = z;
    
    pa[x1] = pa[y1] = T + n;
    
    return 1;
}

IL ll kru()
{
    sort(side + 1, side + m + 1);
    
    for(int i = 1; i <= n; ++i)
    {
        pa[i] = i; pa[i + n] = i + n;
    }
    
    ll sum = 0;
    int T = 0;
    for(int i = 1; i <= m && T < n; ++i)
    if(join(side[i].u, side[i].v, side[i].w, T))
    {
        side[i].f = 1;
        sum += side[i].w;
    }
    return sum;
}

IL int get_dep(int u)
{
    if(dep[u] != -1) return dep[u];
    if(!fa[u][0]) return dep[u] = 0;
    return dep[u] = get_dep(fa[u][0]) + 1;
}

IL void lca()
{
    int n2 = (n << 1) - 1;
    memset(dep, -1, sizeof(dep));
    for(int i = 1; i <= n2; ++i)
    if(dep[i] == -1)
        get_dep(i);
    for(int i = 2; i <= n2; ++i)
        lg[i] = lg[i >> 1] + 1;
    for(int j = 1; j <= lg[n2]; ++j)
    for(int i = 1; i <= n2; ++i)
    if(fa[i][j - 1])
        fa[i][j] = fa[fa[i][j - 1]][j - 1];
}

IL void swap_(int &x, int &y) { int tmp = x; x = y; y = tmp; }

IL int query(int x, int y)
{
    if(dep[x] < dep[y]) swap_(x, y);
    for(int t = dep[x] - dep[y]; t; t -= t & (-t))
        x = fa[x][lg[t & (-t)]];
    if(x == y) return x;
    for(int i = lg[dep[x]]; i >= 0; --i)
    if(fa[x][i] != fa[y][i])
    {
        x = fa[x][i];
        y = fa[y][i];
    }
    return fa[x][0];
}

IL void solve(ll sum)
{
    ll det = -1, w;
    for(int i = 1, p, x, y; i <= m; ++i)
    if(!side[i].f)
    {
        x = side[i].u; y = side[i].v;
        p = query(x, y);
        w = side[i].w - weight[p];
        if(w)
        {
            if(det == -1 || w < det) det = w;
        }else
        if(!w)
        {
            for(x = fa[x][0]; x != p; x = fa[x][0])
            if(weight[x] != side[i].w && weight[x] > w)
                w = weight[x];
            for(y = fa[y][0]; y != p; y = fa[y][0])
            if(weight[y] != side[i].w && weight[y] > w)
                w = weight[y];
            det = weight[p] - w;
        }
    }
    printf("%lld\n", det + sum);
}

int main()
{
    n = read(); m = read();
    for(int i = 1; i <= m; ++i)
    {
        side[i].u = read(); side[i].v = read(); side[i].w = read();
    }
    ll sum = kru();
    lca();
    solve(sum);
    return 0;
}