1. 程式人生 > >LightGBM 調參方法

LightGBM 調參方法

轉:https://www.imooc.com/article/43784

2018.07.13 22:48 3071瀏覽 字號

鄙人調參新手,最近用lightGBM有點猛,無奈在各大部落格之間找不到具體的調參方法,於是將自己的調參notebook列印成markdown出來,希望可以跟大家互相學習。

其實,對於基於決策樹的模型,調參的方法都是大同小異。一般都需要如下步驟:

  1. 首先選擇較高的學習率,大概0.1附近,這樣是為了加快收斂的速度。這對於調參是很有必要的。

  2. 對決策樹基本引數調參

  3. 正則化引數調參

  4. 最後降低學習率,這裡是為了最後提高準確率

所以,下面的調參例子是基於上述步驟來操作。資料集為一個(4400+, 1000+)的資料集,全是數值特徵,metric採用均方根誤差。

(PS:還是吐槽一下,lightgbm引數的同義詞(alias)實在是太多了,有時候不同的引數但同一個意思的時候真的很困擾,下面同義的引數我都用/劃開,方便檢視。)

Step1. 學習率和估計器及其數目

不管怎麼樣,我們先把學習率先定一個較高的值,這裡取 learning_rate = 0.1,其次確定估計器boosting/boost/boosting_type的型別,不過預設都會選gbdt

為了確定估計器的數目,也就是boosting迭代的次數,也可以說是殘差樹的數目,引數名為n_estimators/num_iterations/num_round/num_boost_round。我們可以先將該引數設成一個較大的數,然後在cv結果中檢視最優的迭代次數,具體如程式碼。

在這之前,我們必須給其他重要的引數一個初始值。初始值的意義不大,只是為了方便確定其他引數。下面先給定一下初始值:

以下引數根據具體專案要求定:

'boosting_type'/'boosting': 'gbdt''objective': 'regression''metric': 'rmse'

以下引數我選擇的初始值,你可以根據自己的情況來選擇:

'max_depth': 6     ###   根據問題來定咯,由於我的資料集不是很大,所以選擇了一個適中的值,其實4-10都無所謂。'num_leaves': 50  ###   由於lightGBM是leaves_wise生長,官方說法是要小於2^max_depth'subsample'/'bagging_fraction':0.8           ###  資料取樣'colsample_bytree'/'feature_fraction': 0.8  ###  特徵取樣

下面我是用LightGBM的cv函式進行演示:

params = {    'boosting_type': 'gbdt', 
    'objective': 'regression', 

    'learning_rate': 0.1, 
    'num_leaves': 50, 
    'max_depth': 6,    'subsample': 0.8, 
    'colsample_bytree': 0.8, 
    }
data_train = lgb.Dataset(df_train, y_train, silent=True)
cv_results = lgb.cv(
    params, data_train, num_boost_round=1000, nfold=5, stratified=False, shuffle=True, metrics='rmse',
    early_stopping_rounds=50, verbose_eval=50, show_stdv=True, seed=0)

print('best n_estimators:', len(cv_results['rmse-mean']))
print('best cv score:', cv_results['rmse-mean'][-1])
[50]    cv_agg's rmse: 1.38497 + 0.0202823best n_estimators: 43best cv score: 1.3838664241

由於我的資料集不是很大,所以在學習率為0.1時,最優的迭代次數只有43。那麼現在,我們就代入(0.1, 43)進入其他引數的tuning。但是還是建議,在硬體條件允許的條件下,學習率還是越小越好。

Step2. max_depth 和 num_leaves

這是提高精確度的最重要的引數。

max_depth :設定樹深度,深度越大可能過擬合

num_leaves:因為 LightGBM 使用的是 leaf-wise 的演算法,因此在調節樹的複雜程度時,使用的是 num_leaves 而不是 max_depth。大致換算關係:num_leaves = 2^(max_depth),但是它的值的設定應該小於 2^(max_depth),否則可能會導致過擬合。

我們也可以同時調節這兩個引數,對於這兩個引數調優,我們先粗調,再細調:

這裡我們引入sklearn裡的GridSearchCV()函式進行搜尋。不知道怎的,這個函式特別耗記憶體,特別耗時間,特別耗精力。

from sklearn.model_selection import GridSearchCV### 我們可以建立lgb的sklearn模型,使用上面選擇的(學習率,評估器數目)model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=50,
                              learning_rate=0.1, n_estimators=43, max_depth=6,
                              metric='rmse', bagging_fraction = 0.8,feature_fraction = 0.8)

params_test1={    'max_depth': range(3,8,2),    'num_leaves':range(50, 170, 30)
}
gsearch1 = GridSearchCV(estimator=model_lgb, param_grid=params_test1, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4)
gsearch1.fit(df_train, y_train)
gsearch1.grid_scores_, gsearch1.best_params_, gsearch1.best_score_
Fitting 5 folds for each of 12 candidates, totalling 60 fits


[Parallel(n_jobs=4)]: Done  42 tasks      | elapsed:  2.0min
[Parallel(n_jobs=4)]: Done  60 out of  60 | elapsed:  3.1min finished


([mean: -1.88629, std: 0.13750, params: {'max_depth': 3, 'num_leaves': 50},  mean: -1.88629, std: 0.13750, params: {'max_depth': 3, 'num_leaves': 80},  mean: -1.88629, std: 0.13750, params: {'max_depth': 3, 'num_leaves': 110},  mean: -1.88629, std: 0.13750, params: {'max_depth': 3, 'num_leaves': 140},  mean: -1.86917, std: 0.12590, params: {'max_depth': 5, 'num_leaves': 50},  mean: -1.86917, std: 0.12590, params: {'max_depth': 5, 'num_leaves': 80},  mean: -1.86917, std: 0.12590, params: {'max_depth': 5, 'num_leaves': 110},  mean: -1.86917, std: 0.12590, params: {'max_depth': 5, 'num_leaves': 140},  mean: -1.89254, std: 0.10904, params: {'max_depth': 7, 'num_leaves': 50},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 80},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 110},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 140}],
 {'max_depth': 7, 'num_leaves': 80}, -1.8602436718814157)

這裡,我們運行了12個引數組合,得到的最優解是在max_depth為7,num_leaves為80的情況下,分數為-1.860。

這裡必須說一下,sklearn模型評估裡的scoring引數都是採用的higher return values are better than lower return values(較高的返回值優於較低的返回值)

但是,我採用的metric策略採用的是均方誤差(rmse),越低越好,所以sklearn就提供了neg_mean_squared_erro引數,也就是返回metric的負數,所以就均方差來說,也就變成負數越大越好了。

所以,可以看到,最優解的分數為-1.860,轉化為均方差為np.sqrt(-(-1.860)) = 1.3639,明顯比step1的分數要好很多。

至此,我們將我們這步得到的最優解代入第三步。其實,我這裡只進行了粗調,如果要得到更好的效果,可以將max_depth在7附近多取幾個值,num_leaves在80附近多取幾個值。千萬不要怕麻煩,雖然這確實很麻煩。

params_test2={    'max_depth': [6,7,8],    'num_leaves':[68,74,80,86,92]
}

gsearch2 = GridSearchCV(estimator=model_lgb, param_grid=params_test2, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4)
gsearch2.fit(df_train, y_train)
gsearch2.grid_scores_, gsearch2.best_params_, gsearch2.best_score_
Fitting 5 folds for each of 15 candidates, totalling 75 fits


[Parallel(n_jobs=4)]: Done  42 tasks      | elapsed:  2.8min
[Parallel(n_jobs=4)]: Done  75 out of  75 | elapsed:  5.1min finished


([mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 68},  mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 74},  mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 80},  mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 86},  mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 92},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 68},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 74},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 80},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 86},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 92},  mean: -1.88197, std: 0.11295, params: {'max_depth': 8, 'num_leaves': 68},  mean: -1.89117, std: 0.12686, params: {'max_depth': 8, 'num_leaves': 74},  mean: -1.86390, std: 0.12259, params: {'max_depth': 8, 'num_leaves': 80},  mean: -1.86733, std: 0.12159, params: {'max_depth': 8, 'num_leaves': 86},  mean: -1.86665, std: 0.12174, params: {'max_depth': 8, 'num_leaves': 92}],
 {'max_depth': 7, 'num_leaves': 68}, -1.8602436718814157)

可見最大深度7是沒問題的,但是看細節的話,發現在最大深度為7的情況下,葉結點的數量對分數並沒有影響。

Step3: min_data_in_leaf 和 min_sum_hessian_in_leaf

說到這裡,就該降低過擬合了。

min_data_in_leaf 是一個很重要的引數, 也叫min_child_samples,它的值取決於訓練資料的樣本個樹和num_leaves. 將其設定的較大可以避免生成一個過深的樹, 但有可能導致欠擬合。

min_sum_hessian_in_leaf:也叫min_child_weight,使一個結點分裂的最小海森值之和,真拗口(Minimum sum of hessians in one leaf to allow a split. Higher values potentially decrease overfitting)

我們採用跟上面相同的方法進行:

params_test3={    'min_child_samples': [18, 19, 20, 21, 22],    'min_child_weight':[0.001, 0.002]
}
model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=80,
                              learning_rate=0.1, n_estimators=43, max_depth=7, 
                              metric='rmse', bagging_fraction = 0.8, feature_fraction = 0.8)
gsearch3 = GridSearchCV(estimator=model_lgb, param_grid=params_test3, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4)
gsearch3.fit(df_train, y_train)
gsearch3.grid_scores_, gsearch3.best_params_, gsearch3.best_score_
Fitting 5 folds for each of 10 candidates, totalling 50 fits


[Parallel(n_jobs=4)]: Done  42 tasks      | elapsed:  2.9min
[Parallel(n_jobs=4)]: Done  50 out of  50 | elapsed:  3.3min finished


([mean: -1.88057, std: 0.13948, params: {'min_child_samples': 18, 'min_child_weight': 0.001},  mean: -1.88057, std: 0.13948, params: {'min_child_samples': 18, 'min_child_weight': 0.002},  mean: -1.88365, std: 0.13650, params: {'min_child_samples': 19, 'min_child_weight': 0.001},  mean: -1.88365, std: 0.13650, params: {'min_child_samples': 19, 'min_child_weight': 0.002},  mean: -1.86024, std: 0.11364, params: {'min_child_samples': 20, 'min_child_weight': 0.001},  mean: -1.86024, std: 0.11364, params: {'min_child_samples': 20, 'min_child_weight': 0.002},  mean: -1.86980, std: 0.14251, params: {'min_child_samples': 21, 'min_child_weight': 0.001},  mean: -1.86980, std: 0.14251, params: {'min_child_samples': 21, 'min_child_weight': 0.002},  mean: -1.86750, std: 0.13898, params: {'min_child_samples': 22, 'min_child_weight': 0.001},  mean: -1.86750, std: 0.13898, params: {'min_child_samples': 22, 'min_child_weight': 0.002}],
 {'min_child_samples': 20, 'min_child_weight': 0.001}, -1.8602436718814157)

這是我經過粗調後細調的結果,可以看到,min_data_in_leaf的最優值為20,而min_sum_hessian_in_leaf對最後的值幾乎沒有影響。且這裡調參之後,最後的值沒有進行優化,說明之前的預設值即為20,0.001。

Step4: feature_fraction 和 bagging_fraction

這兩個引數都是為了降低過擬合的。

feature_fraction引數來進行特徵的子抽樣。這個引數可以用來防止過擬合及提高訓練速度。

bagging_fraction+bagging_freq引數必須同時設定,bagging_fraction相當於subsample樣本取樣,可以使bagging更快的執行,同時也可以降擬合。bagging_freq預設0,表示bagging的頻率,0意味著沒有使用bagging,k意味著每k輪迭代進行一次bagging。

不同的引數,同樣的方法。

params_test4={    'feature_fraction': [0.5, 0.6, 0.7, 0.8, 0.9],    'bagging_fraction': [0.6, 0.7, 0.8, 0.9, 1.0]
}
model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=80,
                              learning_rate=0.1, n_estimators=43, max_depth=7, 
                              metric='rmse', bagging_freq = 5,  min_child_samples=20)
gsearch4 = GridSearchCV(estimator=model_lgb, param_grid=params_test4, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4)
gsearch4.fit(df_train, y_train)
gsearch4.grid_scores_, gsearch4.best_params_, gsearch4.best_score_
Fitting 5 folds for each of 25 candidates, totalling 125 fits


[Parallel(n_jobs=4)]: Done  42 tasks      | elapsed:  2.6min
[Parallel(n_jobs=4)]: Done 125 out of 125 | elapsed:  7.1min finished


([mean: -1.90447, std: 0.15841, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.5},  mean: -1.90846, std: 0.13925, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.6},  mean: -1.91695, std: 0.14121, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.7},  mean: -1.90115, std: 0.12625, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.8},  mean: -1.92586, std: 0.15220, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.9},  mean: -1.88031, std: 0.17157, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.5},  mean: -1.89513, std: 0.13718, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.6},  mean: -1.88845, std: 0.13864, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.7},  mean: -1.89297, std: 0.12374, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.8},  mean: -1.89432, std: 0.14353, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.9},  mean: -1.88088, std: 0.14247, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.5},  mean: -1.90080, std: 0.13174, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.6},  mean: -1.88364, std: 0.14732, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.7},  mean: -1.88987, std: 0.13344, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.8},  mean: -1.87752, std: 0.14802, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.9},  mean: -1.88348, std: 0.13925, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.5},  mean: -1.87472, std: 0.13301, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.6},  mean: -1.88656, std: 0.12241, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.7},  mean: -1.89029, std: 0.10776, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.8},  mean: -1.88719, std: 0.11915, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.9},  mean: -1.86170, std: 0.12544, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.5},  mean: -1.87334, std: 0.13099, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.6},  mean: -1.85412, std: 0.12698, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.7},  mean: -1.86024, std: 0.11364, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.8},  mean: -1.87266, std: 0.12271, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.9}],
 {'bagging_fraction': 1.0, 'feature_fraction': 0.7}, -1.8541224387666373)

從這裡可以看出來,bagging_feaction和feature_fraction的理想值分別是1.0和0.7,一個很重要原因就是,我的樣本數量比較小(4000+),但是特徵數量很多(1000+)。所以,這裡我們取更小的步長,對feature_fraction進行更細緻的取值。

params_test5={    'feature_fraction': [0.62, 0.65, 0.68, 0.7, 0.72, 0.75, 0.78 ]
}
model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=80,
                              learning_rate=0.1, n_estimators=43, max_depth=7, 
                              metric='rmse',  min_child_samples=20)
gsearch5 = GridSearchCV(estimator=model_lgb, param_grid=params_test5, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4)
gsearch5.fit(df_train, y_train)
gsearch5.grid_scores_, gsearch5.best_params_, gsearch5.best_score_
Fitting 5 folds for each of 7 candidates, totalling 35 fits


[Parallel(n_jobs=4)]: Done  35 out of  35 | elapsed:  2.3min finished


([mean: -1.86696, std: 0.12658, params: {'feature_fraction': 0.62},  mean: -1.88337, std: 0.13215, params: {'feature_fraction': 0.65},  mean: -1.87282, std: 0.13193, params: {'feature_fraction': 0.68},  mean: -1.85412, std: 0.12698, params: {'feature_fraction': 0.7},  mean: -1.88235, std: 0.12682, params: {'feature_fraction': 0.72},  mean: -1.86329, std: 0.12757, params: {'feature_fraction': 0.75},  mean: -1.87943, std: 0.12107, params: {'feature_fraction': 0.78}],
 {'feature_fraction': 0.7}, -1.8541224387666373)

好吧,feature_fraction就是0.7了

Step5: 正則化引數

正則化引數lambda_l1(reg_alpha), lambda_l2(reg_lambda),毫無疑問,是降低過擬合的,兩者分別對應l1正則化和l2正則化。我們也來嘗試一下使用這兩個引數。

params_test6={    'reg_alpha': [0, 0.001, 0.01, 0.03, 0.08, 0.3, 0.5],    'reg_lambda': [0, 0.001, 0.01, 0.03, 0.08, 0.3, 0.5]
}
model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=80,
                              learning_rate=0.b1, n_estimators=43, max_depth=7, 
                              metric='rmse',  min_child_samples=20, feature_fraction=0.7)
gsearch6 = GridSearchCV(estimator=model_lgb, param_grid=params_test6, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4)
gsearch6.fit(df_train, y_train)
gsearch6.grid_scores_, gsearch6.best_params_, gsearch6.best_score_
Fitting 5 folds for each of 49 candidates, totalling 245 fits


[Parallel(n_jobs=4)]: Done  42 tasks      | elapsed:  2.8min
[Parallel(n_jobs=4)]: Done 192 tasks      | elapsed: 10.6min
[Parallel(n_jobs=4)]: Done 245 out of 245 | elapsed: 13.3min finished


([mean: -1.85412, std: 0.12698, params: {'reg_alpha': 0, 'reg_lambda': 0},  mean: -1.85990, std: 0.13296, params: {'reg_alpha': 0, 'reg_lambda': 0.001},  mean: -1.86367, std: 0.13634, params: {'reg_alpha': 0, 'reg_lambda': 0.01},  mean: -1.86787, std: 0.13881, params: {'reg_alpha': 0, 'reg_lambda': 0.03},  mean: -1.87099, std: 0.12476, params: {'reg_alpha': 0, 'reg_lambda': 0.08},  mean: -1.87670, std: 0.11849, params: {'reg_alpha': 0, 'reg_lambda': 0.3},  mean: -1.88278, std: 0.13064, params: {'reg_alpha': 0, 'reg_lambda': 0.5},  mean: -1.86190, std: 0.13613, params: {'reg_alpha': 0.001, 'reg_lambda': 0},  mean: -1.86190, std: 0.13613, params: {'reg_alpha': 0.001, 'reg_lambda': 0.001},  mean: -1.86515, std: 0.14116, params: {'reg_alpha': 0.001, 'reg_lambda': 0.01},  mean: -1.86908, std: 0.13668, params: {'reg_alpha': 0.001, 'reg_lambda': 0.03},  mean: -1.86852, std: 0.12289, params: {'reg_alpha': 0.001, 'reg_lambda': 0.08},  mean: -1.88076, std: 0.11710, params: {'reg_alpha': 0.001, 'reg_lambda': 0.3},  mean: -1.88278, std: 0.13064, params: {'reg_alpha': 0.001, 'reg_lambda': 0.5},  mean: -1.87480, std: 0.13889, params: {'reg_alpha': 0.01, 'reg_lambda': 0},  mean: -1.87284, std: 0.14138, params: {'reg_alpha': 0.01, 'reg_lambda': 0.001},  mean: -1.86030, std: 0.13332, params: {'reg_alpha': 0.01, 'reg_lambda': 0.01},  mean: -1.86695, std: 0.12587, params: {'reg_alpha': 0.01, 'reg_lambda': 0.03},  mean: -1.87415, std: 0.13100, params: {'reg_alpha': 0.01, 'reg_lambda': 0.08},  mean: -1.88543, std: 0.13195, params: {'reg_alpha': 0.01, 'reg_lambda': 0.3},  mean: -1.88076, std: 0.13502, params: {'reg_alpha': 0.01, 'reg_lambda': 0.5},  mean: -1.87729, std: 0.12533, params: {'reg_alpha': 0.03, 'reg_lambda': 0},  mean: -1.87435, std: 0.12034, params: {'reg_alpha': 0.03, 'reg_lambda': 0.001},  mean: -1.87513, std: 0.12579, params: {'reg_alpha': 0.03, 'reg_lambda': 0.01},  mean: -1.88116, std: 0.12218, params: {'reg_alpha': 0.03, 'reg_lambda': 0.03},  mean: -1.88052, std: 0.13585, params: {'reg_alpha': 0.03, 'reg_lambda': 0.08},  mean: -1.87565, std: 0.12200, params: {'reg_alpha': 0.03, 'reg_lambda': 0.3},  mean: -1.87935, std: 0.13817, params: {'reg_alpha': 0.03, 'reg_lambda': 0.5},  mean: -1.87774, std: 0.12477, params: {'reg_alpha': 0.08, 'reg_lambda': 0},  mean: -1.87774, std: 0.12477, params: {'reg_alpha': 0.08, 'reg_lambda': 0.001},  mean: -1.87911, std: 0.12027, params: {'reg_alpha': 0.08, 'reg_lambda': 0.01},  mean: -1.86978, std: 0.12478, params: {'reg_alpha': 0.08, 'reg_lambda': 0.03},  mean: -1.87217, std: 0.12159, params: {'reg_alpha': 0.08, 'reg_lambda': 0.08},  mean: -1.87573, std: 0.14137, params: {'reg_alpha': 0.08, 'reg_lambda': 0.3},  mean: -1.85969, std: 0.13109, params: {'reg_alpha': 0.08, 'reg_lambda': 0.5},  mean: -1.87632, std: 0.12398, params: {'reg_alpha': 0.3, 'reg_lambda': 0},  mean: -1.86995, std: 0.12651, params: {'reg_alpha': 0.3, 'reg_lambda': 0.001},  mean: -1.86380, std: 0.12793, params: {'reg_alpha': 0.3, 'reg_lambda': 0.01},  mean: -1.87577, std: 0.13002, params: {'reg_alpha': 0.3, 'reg_lambda': 0.03},  mean: -1.87402, std: 0.13496, params: {'reg_alpha': 0.3, 'reg_lambda': 0.08},  mean: -1.87032, std: 0.12504, params: {'reg_alpha': 0.3, 'reg_lambda': 0.3},  mean: -1.88329, std: 0.13237, params: {'reg_alpha': 0.3, 'reg_lambda': 0.5},  mean: -1.87196, std: 0.13099, params: {'reg_alpha': 0.5, 'reg_lambda': 0},  mean: -1.87196, std: 0.13099, params: {'reg_alpha': 0.5, 'reg_lambda': 0.001},  mean: -1.88222, std: 0.14735, params: {'reg_alpha': 0.5, 'reg_lambda': 0.01},  mean: -1.86618, std: 0.14006, params: {'reg_alpha': 0.5, 'reg_lambda': 0.03},  mean: -1.88579, std: 0.12398, params: {'reg_alpha': 0.5, 'reg_lambda': 0.08},  mean: -1.88297, std: 0.12307, params: {'reg_alpha': 0.5, 'reg_lambda': 0.3},  mean: -1.88148, std: 0.12622, params: {'reg_alpha': 0.5, 'reg_lambda': 0.5}],
 {'reg_alpha': 0, 'reg_lambda': 0}, -1.8541224387666373)

哈哈,看來我多此一舉了。

step6: 降低learning_rate

之前使用較高的學習速率是因為可以讓收斂更快,但是準確度肯定沒有細水長流來的好。最後,我們使用較低的學習速率,以及使用更多的決策樹n_estimators來訓練資料,看能不能可以進一步的優化分數。

我們可以用回lightGBM的cv函數了 ,我們代入之前優化好的引數。

params = {    'boosting_type': 'gbdt', 
    'objective': 'regression', 

    'learning_rate': 0.005, 
    'num_leaves': 80, 
    'max_depth': 7,    'min_data_in_leaf': 20,    'subsample': 1, 
    'colsample_bytree': 0.7, 
    }

data_train = lgb.Dataset(df_train, y_train, silent=True)
cv_results = lgb.cv(
    params, data_train, num_boost_round=10000, nfold=5, stratified=False, shuffle=True, metrics='rmse',
    early_stopping_rounds=50, verbose_eval=100, show_stdv=True)

print('best n_estimators:', len(cv_results['rmse-mean']))
print('best cv score:', cv_results['rmse-mean'][-1])
[100]   cv_agg's rmse: 1.52939 + 0.0261756[200]   cv_agg's rmse: 1.43535 + 0.0187243[300]   cv_agg's rmse: 1.39584 + 0.0157521[400]   cv_agg's rmse: 1.37935 + 0.0157429[500]   cv_agg's rmse: 1.37313 + 0.0164503[600]   cv_agg's rmse: 1.37081 + 0.0172752[700]   cv_agg's rmse: 1.36942 + 0.0177888[800]   cv_agg's rmse: 1.36854 + 0.0180575[900]   cv_agg's rmse: 1.36817 + 0.0188776[1000]  cv_agg's rmse: 1.36796 + 0.0190279[1100]  cv_agg's rmse: 1.36783 + 0.0195969best n_estimators: 1079best cv score: 1.36772351783

這就是一個大概過程吧,其實也有更高階的方法,但是這種基本的對於GBM模型的調參方法也是需要了解的吧。如有問題,請多指教。

Reference:

  1. https://www.2cto.com/kf/201607/528771.html

  2. https://zhuanlan.zhihu.com/p/30627440

  3. https://www.jianshu.com/p/b4ac0596e5ef

轉載請註明原文連結,對本文有任何建議和意見請在評論區討論,謝謝!