人工智慧之Python人臉識別技術,人人都能做識別!
阿新 • • 發佈:2018-11-11
一、環境搭建
1.系統環境
Ubuntu 17.04
Python 2.7.14
pycharm 開發工具
2.開發環境,安裝各種系統包
- 人臉檢測基於dlib,dlib依賴Boost和cmake
- 在windows中如果要使用dlib還是比較麻煩的,如果想省時間可以在anaconda中安裝
conda install -c conda-forge dlib=19.4
$ sudo apt-get install build-essential cmake $ sudo apt-get install libgtk-3-dev $ sudo apt-get install libboost-all-dev
- 其他重要的包
$ pip install numpy
$ pip install scipy
$ pip install opencv-python
$ pip install dlib
- 安裝 face_recognition
# 安裝 face_recognition
$ pip install face_recognition
# 安裝face_recognition過程中會自動安裝 numpy、scipy 等
加群:865597862可以獲取Python學習資料,和Python安裝教程已加上傳至群檔案,加群即可獲取!
二、使用教程
1、facial_features資料夾
此demo主要展示了識別指定圖片中人臉的特徵資料,下面就是人臉的八個特徵,我們就是要獲取特徵資料
'chin',
'left_eyebrow',
'right_eyebrow',
'nose_bridge',
'nose_tip',
'left_eye',
'right_eye',
'top_lip',
'bottom_lip'
執行結果:
自動識別圖片中的人臉,並且識別它的特徵
原圖:
image
image
特徵資料,資料就是執行出來的矩陣,也就是一個二維陣列
image
程式碼:
# -*- coding: utf-8 -*-
# 自動識別人臉特徵
# filename : find_facial_features_in_picture.py
# 匯入pil模組 ,可用命令安裝 apt-get install python-Imaging
from PIL import Image, ImageDraw
# 匯入face_recogntion模組,可用命令安裝 pip install face_recognition
import face_recognition
# 將jpg檔案載入到numpy 陣列中
image = face_recognition.load_image_file("chenduling.jpg")
#查詢影象中所有面部的所有面部特徵
face_landmarks_list = face_recognition.face_landmarks(image)
print("I found {} face(s) in this photograph.".format(len(face_landmarks_list)))
for face_landmarks in face_landmarks_list:
#列印此影象中每個面部特徵的位置
facial_features = [
'chin',
'left_eyebrow',
'right_eyebrow',
'nose_bridge',
'nose_tip',
'left_eye',
'right_eye',
'top_lip',
'bottom_lip'
]
for facial_feature in facial_features:
print("The {} in this face has the following points: {}".format(facial_feature, face_landmarks[facial_feature]))
#讓我們在影象中描繪出每個人臉特徵!
pil_image = Image.fromarray(image)
d = ImageDraw.Draw(pil_image)
for facial_feature in facial_features:
d.line(face_landmarks[facial_feature], width=5)
pil_image.show()
2、find_face資料夾
不僅能識別出來所有的人臉,而且可以將其截圖挨個顯示出來,列印在前臺視窗
原始的圖片
這裡寫圖片描述
識別的圖片
這裡寫圖片描述
程式碼:
# -*- coding: utf-8 -*-
# 識別圖片中的所有人臉並顯示出來
# filename : find_faces_in_picture.py
# 匯入pil模組 ,可用命令安裝 apt-get install python-Imaging
from PIL import Image
# 匯入face_recogntion模組,可用命令安裝 pip install face_recognition
import face_recognition
# 將jpg檔案載入到numpy 陣列中
image = face_recognition.load_image_file("yiqi.jpg")
# 使用預設的給予HOG模型查詢影象中所有人臉
# 這個方法已經相當準確了,但還是不如CNN模型那麼準確,因為沒有使用GPU加速
# 另請參見: find_faces_in_picture_cnn.py
face_locations = face_recognition.face_locations(image)
# 使用CNN模型
# face_locations = face_recognition.face_locations(image, number_of_times_to_upsample=0, model="cnn")
# 列印:我從圖片中找到了 多少 張人臉
print("I found {} face(s) in this photograph.".format(len(face_locations)))
# 迴圈找到的所有人臉
for face_location in face_locations:
# 列印每張臉的位置資訊
top, right, bottom, left = face_location
print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right))
# 指定人臉的位置資訊,然後顯示人臉圖片
face_image = image[top:bottom, left:right]
pil_image = Image.fromarray(face_image)
pil_image.show()
3、know_face資料夾
通過設定的人臉圖片識別未知圖片中的人臉
# -*- coding: utf-8 -*-
# 識別人臉鑑定是哪個人
# 匯入face_recogntion模組,可用命令安裝 pip install face_recognition
import face_recognition
#將jpg檔案載入到numpy陣列中
chen_image = face_recognition.load_image_file("chenduling.jpg")
#要識別的圖片
unknown_image = face_recognition.load_image_file("sunyizheng.jpg")
#獲取每個影象檔案中每個面部的面部編碼
#由於每個影象中可能有多個面,所以返回一個編碼列表。
#但是由於我知道每個影象只有一個臉,我只關心每個影象中的第一個編碼,所以我取索引0。
chen_face_encoding = face_recognition.face_encodings(chen_image)[0]
print("chen_face_encoding:{}".format(chen_face_encoding))
unknown_face_encoding = face_recognition.face_encodings(unknown_image)[0]
print("unknown_face_encoding :{}".format(unknown_face_encoding))
known_faces = [
chen_face_encoding
]
#結果是True/false的陣列,未知面孔known_faces陣列中的任何人相匹配的結果
results = face_recognition.compare_faces(known_faces, unknown_face_encoding)
print("result :{}".format(results))
print("這個未知面孔是 陳都靈 嗎? {}".format(results[0]))
print("這個未知面孔是 我們從未見過的新面孔嗎? {}".format(not True in results))
4、video資料夾
通過呼叫電腦攝像頭動態獲取視訊內的人臉,將其和我們指定的圖片集進行匹配,可以告知我們視訊內的人臉是否是我們設定好的
實現:
image
程式碼:
# -*- coding: utf-8 -*-
# 攝像頭頭像識別
import face_recognition
import cv2
video_capture = cv2.VideoCapture(0)
# 本地影象
chenduling_image = face_recognition.load_image_file("chenduling.jpg")
chenduling_face_encoding = face_recognition.face_encodings(chenduling_image)[0]
# 本地影象二
sunyizheng_image = face_recognition.load_image_file("sunyizheng.jpg")
sunyizheng_face_encoding = face_recognition.face_encodings(sunyizheng_image)[0]
# 本地圖片三
zhangzetian_image = face_recognition.load_image_file("zhangzetian.jpg")
zhangzetian_face_encoding = face_recognition.face_encodings(zhangzetian_image)[0]
# Create arrays of known face encodings and their names
# 臉部特徵資料的集合
known_face_encodings = [
chenduling_face_encoding,
sunyizheng_face_encoding,
zhangzetian_face_encoding
]
# 人物名稱的集合
known_face_names = [
"michong",
"sunyizheng",
"chenduling"
]
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# 讀取攝像頭畫面
ret, frame = video_capture.read()
# 改變攝像頭影象的大小,影象小,所做的計算就少
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# opencv的影象是BGR格式的,而我們需要是的RGB格式的,因此需要進行一個轉換。
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# 根據encoding來判斷是不是同一個人,是就輸出true,不是為flase
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# 預設為unknown
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# if match[0]:
# name = "michong"
# If a match was found in known_face_encodings, just use the first one.
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# 將捕捉到的人臉顯示出來
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# 矩形框
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
#加上標籤
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display
cv2.imshow('monitor', frame)
# 按Q退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
5、boss資料夾
本開源專案,主要是結合攝像頭程式+極光推送,實現識別攝像頭中的人臉。並且通過極光推送平臺給移動端傳送訊息!
小禮物