numpy常用函式筆記
阿新 • • 發佈:2018-11-11
1. np.log10()
計算以10為底的對數值
import numpy as np
np.log10(x)
>>>np.log10(100)
2.0
2. np. log()
計算以e為底的對數值
import numpy as np
np.log(x)
>>>np.log(np.e)
1.0
>>>np.log(10)
2.3025850929940459
3. np.log2()
計算以2為底的對數值,直接把2放在log和()之間
import numpy as np np.log2(x) >>>np.log2(4) 2.0
4. np.random.shuffle(x)
將給定的陣列的內容進行重新排序(類似於洗牌,打亂順序)
arr=np.arange(10) np.random.shuffle(arr) >>>arr array([5, 2, 7, 0, 6, 3, 4, 1, 8, 9]) #多維 arr=np.arange(12).reshape(3,4) >>>arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) np.random.shuffle(arr) >>>arr array([[ 4, 5, 6, 7], [ 0, 1, 2, 3], [ 8, 9, 10, 11]])
5. np.mean()
功能:求平均值
通式:numpy.mean(a,axis,dtype,out,keepdims)
常用的引數:axis
eg: m*n的矩陣
- 不設定axis:對m*n個值求平均
- axis=0:對每一列求平均值
- axis=1:對每一行求平均值
>>>import numpy as np >>>a=np.array([[1,2],[3,4]) >>>a array([[1,2], [3,4]]) >>>np.mean(a) 2.5 >>>np.mean(a,axis=0) array([2.0,3.0]) >>>np.mean(a,axis=1) array([1.5,3.5])
>>>import numpy as np
>>>a=array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
>>>a
array([
[1,2,3],
[4,5,6],
[7,8,9],
[10,11,12]])
>>>b=np.mat(a)
>>>b
matrix([
[1,2,3],
[4,5,6],
[7,8,9],
[10,11,12]])
>>>np.mean(b)
6.5
>>>np.mean(b,0)
matrix[[5.5,6.5,7.5]]
>>>np.mean(b,1)
matrix[[2.0],
[5.0],
[8.0],
[11.0]]
6. np.random. choice()
從一個int數字或1維array裡隨機選取內容
通式:np.random.choice(a, size=None, replace=True, p=None)
>>>import numpy as np
>>>np.random.choice(5,3)#從0-4五個數中任取三個
array([0,3,4])
>>>np.random.choice(5,3,p=[0.1,0,0.3,0.6,0])#從0-4五個數中以概率p隨機取三個
array=([3,3,0])
>>>np.random.choice(5,3,replace=False,p=[0.1,0,0.3,0.6,0])#從0-4五個數中不重複的以概率p隨機取三個
array([2,3,0])
未完待續