pytorch神經網路搭建及動態展示
阿新 • • 發佈:2018-11-17
import torch import torch.nn.functional as F import matplotlib.pyplot as plt import matplotlib.animation as animation import numpy as np x = torch.unsqueeze(torch.linspace(-1, 1, 100), 1) y = x.pow(2) + 0.2 * torch.rand(x.size()) class Net(torch.nn.Module): def __init__(self, n_features, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_features, n_hidden) self.predict = torch.nn.Linear(n_hidden, n_output) def forward(self, x): x = F.relu(self.hidden(x)) x = self.predict(x) return x net = Net(1, 10, 1) print(net) optimizer = torch.optim.SGD(net.parameters(), 0.2) loss_func = torch.nn.MSELoss() fig, ax = plt.subplots() plots, = ax.plot(x.numpy(), net(x).detach().numpy(), 'r-', lw=2) ##利用Python繪製動態圖形 def train_step(i): prediction = net(x) loss = loss_func(prediction, y) optimizer.zero_grad() loss.backward() optimizer.step() label = 'step{0}'.format(i) ax.set_xlabel(label) plots.set_ydata(prediction.detach().numpy()) return plots, ax ani = animation.FuncAnimation(fig, train_step, frames=np.arange(200), interval=20) plt.scatter(x.numpy(), y.numpy()) plt.show()