LeetCode 126. Word Ladder II (構造最短路徑模型)
阿新 • • 發佈:2018-11-20
Given two words (beginWord and endWord), and a dictionary’s word list, find all shortest transformation sequence(s) from beginWord to endWord, such that:
- Only one letter can be changed at a time
- Each transformed word must exist in the word list. Note that beginWord is not a transformed word.
Note:
- Return an empty list if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
- You may assume no duplicates in the word list.
- You may assume beginWord and endWord are non-empty and are not the same.
Example 1:
Input:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]
Output:
[
["hit","hot","dot","dog","cog"],
["hit","hot","lot","log","cog"]
]
Example 2:
Input: beginWord = "hit" endWord = "cog" wordList = ["hot","dot","dog","lot","log"] Output: [] Explanation: The endWord "cog" is not in wordList, therefore no possible transformation.
解法
一開始思路是動態規劃,發現這題跟二叉樹計數(卡特蘭數)問題不一樣,資訊量太大不好記錄。然後想到用圖論的方法,對每一個單詞都看成一個節點,如果單詞之間僅相差一個字母,則兩個單詞之間有一條路徑。我們的目標就是找到所有開始單詞到目標單詞的最短路徑。這裡用了dijkstra演算法來求解以開始單詞為起點到其他單詞的最短路徑。算完之後用了遞迴方法構造路徑解。
本題需要對單詞進行編號,一開始用了一個map來進行編號(以為需要通過string來查詢編號,結果不需要用到),結果超時。後來改為一個vector,正常通過了。。
這裡用了兩種方法找路徑,一種是dfs,一種是遞迴(getpath函式)
class Solution {
public:
vector<string> words;
vector<int> G[10000];
bool vis[10000];
int d[10000];
int target;
vector<vector<string>> ans;
bool connect(string& begin, string& end) {
int len = begin.size();
bool err = false;
for(int i=0;i<len;i++)
if(begin[i]!=end[i]){
if(err)
return false;
err = true;
}
return true;
}
void dijkstra(int s) {
memset(vis, 0, sizeof(vis));
priority_queue<pair<int,int>> que;
fill(d, d+10000, (1<<30));
d[s] = 0;
que.push({-d[s], s});
while(!que.empty()) {
pair<int,int> tmp = que.top(); que.pop();
int u = tmp.second;
vis[u]=true;
for(int i=0;i<G[u].size();i++) {
int v=G[u][i];
if(!vis[v]&&d[v]>d[u]+1) {
d[v]=d[u]+1;
que.push({-d[v], v});
}
}
}
}
int path[10000];
int index;
vector<vector<string>> getpath(int s){
vector<vector<string>> res;
if(s==target) {
res.push_back({words[s]});
return res;
}
for(int i=0;i<G[s].size();i++) {
if(d[G[s][i]]==d[s]-1) {
vector<vector<string>> ans = getpath(G[s][i]);
for(auto x: ans) {
x.insert(x.begin(), words[s]);
res.push_back(x);
}
}
}
return res;
}
void dfs(int cur) {
if (target == cur){
vector<string> tmp;
for (int i = 0; i < index; i++)
tmp.push_back(words[path[i]]);
ans.push_back(tmp);
return;
}
for(int i=0;i<G[cur].size();i++){
if(!vis[G[cur][i]] && d[G[cur][i]] == d[cur]-1) {
vis[G[cur][i]] = true;
path[index++] = G[cur][i];
dfs(G[cur][i]);
vis[G[cur][i]] = false;
index--;
}
}
}
vector<vector<string>> findLadders(string begin, string end, vector<string>& list) {
words = list;
auto startword = find(words.begin(), words.end(), begin);
auto endword = find(words.begin(), words.end(), end);
if(endword == words.end() || begin == end)
return vector<vector<string>>();
if (startword == words.end()) {
words.push_back(begin);
startword = find(words.begin(), words.end(), begin);
endword = find(words.begin(), words.end(), end);
}
int n=words.size();
for (int i = 0; i < n; i++) {
for (int j = i+1; j < n; j++) {
if (connect(words[i], words[j])) {
G[i].push_back(j);
G[j].push_back(i);
}
}
}
int s = startword - words.begin();
target = endword - words.begin();
dijkstra(target);
return getpath(s);
}
};