numpy.random.shuffle打亂順序函式
numpy.random.shuffle
在做將caffe模型和預訓練的引數轉化為tensorflow的模型和預訓練的引數,以便微調,遇到如下函式:
-
def gen_data(source):
-
while True:
-
indices = range(len(source.images)) # indices = the number of images in the source data set
-
random.shuffle(indices)
-
for i in indices:
-
image = np.reshape(source.images[i], (28, 28, 1))
-
label = source.labels[i]
-
yield image, label
之前卑鄙陋寡聞,不知道這個用法,按照字面上的意思是打亂,那麼這裡就應該是讓訓練資料集中的資料打亂順序,然後一個挨著一個地(for i in indices)生成訓練資料對。下面就從docs.scipy.org中查到的random.shuffle的用法:
numpy.random.shuffle(x)
Modify a sequence in-place by shuffling its contents.
Parameters: | x : array_like
|
---|---|
Returns: | None |
舉例
python>>>
>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8]
This function only shuffles the array along the first index of a multi-dimensional array(多維矩陣中,只對第一維(行)做打亂順序操作):
python>>>
>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.shuffle(arr)
>>> arr
array([[3, 4, 5],
[6, 7, 8],
[0, 1, 2]])This function only shuffles the array along the first index of a multi-dimensional array:
參考:·[1] https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.shuffle.html#numpy-random-shuffle
[2] https://github.com/ethereon/caffe-tensorflow/blob/master/examples/mnist/finetune_mnist.py