【7】netty4原始碼分析-write
轉自 http://xw-z1985.iteye.com/blog/1970844
Netty的寫操作由兩個步驟組成:
Write:將msg儲存到ChannelOutboundBuffer中
Flush:將msg從ChannelOutboundBuffer中flush到套接字的傳送緩衝區中。
本文介紹第一個步驟write
//DefaultChannelHandlerContext public ChannelFuture write(Object msg) { return write(msg, newPromise()); } public ChannelFuture write(final Object msg, final ChannelPromise promise) { if (msg == null) { throw new NullPointerException("msg"); } validatePromise(promise, true); write(msg, false, promise); return promise; } private void write(Object msg, boolean flush, ChannelPromise promise) { DefaultChannelHandlerContext next = findContextOutbound(); EventExecutor executor = next.executor(); if (executor.inEventLoop()) { next.invokeWrite(msg, promise); if (flush) { next.invokeFlush(); } } else { int size = channel.estimatorHandle().size(msg); if (size > 0) { ChannelOutboundBuffer buffer = channel.unsafe().outboundBuffer(); // Check for null as it may be set to null if the channel is closed already if (buffer != null) { buffer.incrementPendingOutboundBytes(size, false); } } executor.execute(WriteTask.newInstance(next, msg, size, flush, promise)); } }
Write是一個Outbound事件,所以會呼叫outbound處理器的write方法。下面分析headHandler的write方法。
//HeadHandler
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
unsafe.write(msg, promise);
}
裡面會呼叫AbstractUnsafe的write方法
// AbstractUnsafe public void write(Object msg, ChannelPromise promise) { if (!isActive()) { // Mark the write request as failure if the channel is inactive. if (isOpen()) { promise.tryFailure(NOT_YET_CONNECTED_EXCEPTION); } else { promise.tryFailure(CLOSED_CHANNEL_EXCEPTION); } // release message now to prevent resource-leak ReferenceCountUtil.release(msg); } else { outboundBuffer.addMessage(msg, promise); } }
outboundBuffer是AbstractUnsafe使用的一種資料結構ChannelOutboundBuffer,用來儲存待發送的訊息。該資料結構在例項化AbstractUnsafe的同時被初始化:
// ChannelOutboundBuffer private static final Recycler<ChannelOutboundBuffer> RECYCLER = new Recycler<ChannelOutboundBuffer>() { @Override protected ChannelOutboundBuffer newObject(Handle handle) { return new ChannelOutboundBuffer(handle); } }; static ChannelOutboundBuffer newInstance(AbstractChannel channel) { ChannelOutboundBuffer buffer = RECYCLER.get(); buffer.channel = channel; buffer.totalPendingSize = 0; buffer.writable = 1; return buffer; }
ChannelOutboundBuffer的結構如下:
Buffer是用來儲存msg的Entry結構陣列,entry的結構如下:
ChannelOutboundBuffer例項化時,buffer陣列的大小為32,nioBuffers陣列的大小也為32.由於ChannelOutboundBuffer的例項化的代價實際上是很高的,看以下構造方法:
private ChannelOutboundBuffer(Handle handle) {
this.handle = handle;
buffer = new Entry[INITIAL_CAPACITY];
for (int i = 0; i < buffer.length; i++) {
buffer[i] = new Entry();
}
nioBuffers = new ByteBuffer[INITIAL_CAPACITY];
}
所以netty使用基於thread-local的輕量級物件池Recycler對ChannelOutboundBuffer進行回收。當ChannelOutboundBuffer第一次被例項化且使用完畢後,會回收到Recycler中(見下面的recyle方法),下次需要用時,直接從Recycler中取(見下面的get方法),避免了再次例項化和垃圾回收的開銷。
public abstract class Recycler<T> {
private final ThreadLocal<Stack<T>> threadLocal = new ThreadLocal<Stack<T>>() {
@Override
protected Stack<T> initialValue() {
return new Stack<T>(Recycler.this, Thread.currentThread());
}
};
public final T get() {
Stack<T> stack = threadLocal.get();
T o = stack.pop();
if (o == null) {
o = newObject(stack);
}
return o;
}
public final boolean recycle(T o, Handle handle) {
@SuppressWarnings("unchecked")
Stack<T> stack = (Stack<T>) handle;
if (stack.parent != this) {
return false;
}
if (Thread.currentThread() != stack.thread) {
return false;
}
stack.push(o);
return true;
}
protected abstract T newObject(Handle handle);
public interface Handle { }
static final class Stack<T> implements Handle {
private static final int INITIAL_CAPACITY = 256;
final Recycler<T> parent;
final Thread thread;
private T[] elements;
private int size;
private final Map<T, Boolean> map = new IdentityHashMap<T, Boolean>(INITIAL_CAPACITY);
@SuppressWarnings({ "unchecked", "SuspiciousArrayCast" })
Stack(Recycler<T> parent, Thread thread) {
this.parent = parent;
this.thread = thread;
elements = newArray(INITIAL_CAPACITY);
}
T pop() {
int size = this.size;
if (size == 0) {
return null;
}
size --;
T ret = elements[size];
elements[size] = null;
map.remove(ret);
this.size = size;
return ret;
}
void push(T o) {
if (map.put(o, Boolean.TRUE) != null) {
throw new IllegalStateException("recycled already");
}
int size = this.size;
if (size == elements.length) {
T[] newElements = newArray(size << 1);
System.arraycopy(elements, 0, newElements, 0, size);
elements = newElements;
}
elements[size] = o;
this.size = size + 1;
}
@SuppressWarnings({ "unchecked", "SuspiciousArrayCast" })
private static <T> T[] newArray(int length) {
return (T[]) new Object[length];
}
}
下面接著分析ChannelOutboundBuffer的addMessage方法。
// ChannelOutboundBuffer
void addMessage(Object msg, ChannelPromise promise) {
int size = channel.estimatorHandle().size(msg);
if (size < 0) {
size = 0;
}
Entry e = buffer[tail++];
e.msg = msg;
e.pendingSize = size;
e.promise = promise;
e.total = total(msg);
tail &= buffer.length - 1;
if (tail == flushed) {
addCapacity();
}
// increment pending bytes after adding message to the unflushed arrays.
// See https://github.com/netty/netty/issues/1619
incrementPendingOutboundBytes(size, true);
}
每次都會將msg作為一個Entry儲存到buffer陣列的tail位置,然後將tail自增1,自增後執行這行程式碼tail &= buffer.length – 1(譬如假設length為4,當已儲存3個msg後,tail累加到4,和3執行與的結果得到0,因此下次的訊息又重新儲存到buffer的0位置)使得buffer陣列可以迴圈儲存。如果出現tail=flushed,說明空間不夠,需要將陣列擴容到原來大小的兩倍.
incrementPendingOutboundBytes則會更新totalPendingSize,將其累加本次msg的大小。如果新的totalPendingSize超過了channel的高水位線writeBufferHighWaterMark(預設值為64 * 1024),則觸發ChannelWritabilityChanged事件。(注意:如果網路很繁忙,套接字的傳送緩衝區空間 不夠,導致Msg不能及時從buffer中flush出去,那麼不斷的對channel執行write操作,會使得對陣列不斷地進行兩倍擴容,最終導致OOM。所以最好在自己的Inbound處理器裡捕獲ChannelWritabilityChanged事件,然後呼叫channel的isWritable方法,根據結果來決定是否繼續執行write操作)。
// ChannelOutboundBuffer
private static final AtomicLongFieldUpdater<ChannelOutboundBuffer> TOTAL_PENDING_SIZE_UPDATER =
AtomicLongFieldUpdater.newUpdater(ChannelOutboundBuffer.class, "totalPendingSize");
void incrementPendingOutboundBytes(int size, boolean fireEvent) {
// Cache the channel and check for null to make sure we not produce a NPE in case of the Channel gets
// recycled while process this method.
Channel channel = this.channel;
if (size == 0 || channel == null) {
return;
}
long oldValue = totalPendingSize;
long newWriteBufferSize = oldValue + size;
while (!TOTAL_PENDING_SIZE_UPDATER.compareAndSet(this, oldValue, newWriteBufferSize)) {
oldValue = totalPendingSize;
newWriteBufferSize = oldValue + size;
}
int highWaterMark = channel.config().getWriteBufferHighWaterMark();
if (newWriteBufferSize > highWaterMark) {
if (WRITABLE_UPDATER.compareAndSet(this, 1, 0)) {
if (fireEvent) {
channel.pipeline().fireChannelWritabilityChanged();
}
}
}
}
需要注意的是,該方法是執行緒安全的,採用了一個技巧,使用AtomicLongFieldUpdater來對totalPendingSize進行更新,實現CAS的效果,達到併發安全讀寫。相對於synchronized同步,AtomicLongFieldUpdater的開銷是比較小的。
總結可以借鑑的幾個點:
1、輕量級物件池的使用
2、buffer陣列的迴圈儲存
3、ChannelWritabilityChanged事件的觸發
4、AtomicLongFieldUpdater的使用