1. 程式人生 > >樸素貝葉斯應用:垃圾郵件分類

樸素貝葉斯應用:垃圾郵件分類

 

import nltk
nltk.download()
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer

#預處理
def preprocessing(text):
    tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokrnize(sent)]
    stops = stopwords.words('english')  
    tokens = [token for
token in tokens if token not in stops] #去掉停用詞 tokens = [token.lower() for token in tokens if len(token)>=2] #去掉長度小於2的詞 lmtzr = WordNetLemmatizer() tokens = (lmtzr.lemmatize(token) for token in tokens) #詞性還原 preprocessed_text = ' '.join(tokens) return preprocessed_text
#讀取資料集 import csv file_path = r'C:\Users\Administrator\Desktop\SMSSpamCollectionjsn.txt' sms = open(file_path,'r',encoding='utf-8') sms_data = [] sms_label = [] csv_reader = csv.reader(sms,delimiter = '\t') for line in csv_reader: sms_label.append(line[0]) sms_data.append(preprocessing(line[1])) sms.close()
#訓練集和測試集資料劃分 from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size = 0.3,random_state=0,stratify=sms_label) #將其向量化 from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(min_df=2,ngram_range=(1,2),stop_words='english',strip_accents='unicode',norm='12') X_train = vectorizer.fit_transform(x_train) X_test = vectorizer.transform(x_test) #樸素貝葉斯分類器 from sklearn.navie_bayes import MultinomiaNB clf = MultinomiaNB().fit(X_train,y_train) #測試模型 y_nb_pred = clf.predict(X_test) #測試模型:結果顯示 from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report print(y_nb_pred.shape,y_nb_pred) #x_test預測結果 print('nb_confusion_matrix:') cm = confusion_matrix(y_test,y_nb_pred)#混淆矩陣 print(cm) print('nb_classification_report:') cr = classification_report(y_test,y_nb_pred) #主要分類指標的文字報告 print(cr)