1. 程式人生 > >樸素貝葉斯應用:垃圾郵件分類(更新)

樸素貝葉斯應用:垃圾郵件分類(更新)

#讀取資料集
import csv
file_path=r'jiangnan.txt'
sms=open(file_path,'r',encoding='utf-8')
sms_data=[]
sms_label=[]
text=csv.reader(sms,delimiter='\t')
text

#預處理
def preprocessing(text):
    #text=text.decode("utf-8")
    tokens=[word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]   #進行分詞
    stops
=stopwords.words('to') #去掉停用詞 tokens=[token for token in tokens if token not in stops] tokens=[token.lower() for token in tokens if len(token)>=3] lmtzr=WordNetLemmatizer() #詞性還原 tokens=[lmtzr.lemmatize(token) for token in tokens] preprocessed_text
=' '.join(tokens) return preprocessed_text #將其向量化 from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size=0.3,random_state=0,stratify=sms_label) from sklearn.feature_extraction.text import TfidfVectorizer vectorizer=TfidfVectorizer(min_df=2
,ngram_range=(1,2),stop_words='english',strip_accents='unicode',norm='12') X_train=vectorizer.fit_transform(x_train) X_test=vectorizer.transform(x_test) #樸素貝葉斯 from sklearn.naive_bayes import MultinomialNB clf=MultinomialNB().fit(x_train,y_train) #測試模型 from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report cm=confusion_matrix(y_test.y_nb_pred) print(cm) cr=classification_report(y_test.y_nb_pred) print(cr)