1. 程式人生 > >CF601C Kleofáš and the n-thlon(期望+字首和優化dp)

CF601C Kleofáš and the n-thlon(期望+字首和優化dp)

傳送門

解題思路

  要求這個人的排名,我們可以先求出某個人比他排名靠前的概率,然後再乘上\(m-1\)即為答案。求某個人比他排名靠前可以用\(dp\),設\(f[i][j]\)表示前\(i\)場比賽某人的得分為\(j\)的概率,那麼轉移方程為:\(f[i][j]=\sum\limits_{k=1,k!=x[i]}^(min(m,j)) f[i-1][j-k]\),發現這個複雜度是\(O(n^2*m^2)\)的,無法接受。進一步可以看出轉移形式可以字首和優化,只需要加上字首和後把\(k=x[i]\)這個地方挖去即可。這樣時間複雜度為\(O(n^2*m)\)的,然後用滾動陣列優化空間。

程式碼

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>

using namespace std;
const int MAXN = 105;
const int MAXM = 1005;

inline int rd(){
    int x=0,f=1;char ch=getchar();
    while(!isdigit(ch)) {f=ch=='-'?0:1;ch=getchar();}
    while(isdigit(ch))  {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
    return f?x:-x;
}

int n,m,tot,x[MAXN];
double f[2][MAXM*MAXN],ans,sum;

int main(){
    n=rd(),m=rd();f[0][0]=1.0;
    for(int i=1;i<=n;i++) x[i]=rd(),tot+=x[i];
    for(int i=1;i<=n;i++){
        sum=f[(i-1)&1][0];
        for(int j=1;j<tot;j++){
            f[i&1][j]=sum;
            if(j>=x[i]) f[i&1][j]-=f[(i-1)&1][j-x[i]];
            sum+=f[(i-1)&1][j];
            if(j>=m) sum-=f[(i-1)&1][j-m];
            f[i&1][j]/=(m-1);
        }
        if(i==1) f[0][0]=0;
    }
    for(int i=n;i<tot;i++)
        ans+=f[n&1][i];
    printf("%.15lf",ans*(m-1)+1.0);
    return 0;
}