POJ-2566-Bound Found (尺取法)
原題連結:
http://poj.org/problem?id=2566
Signals of most probably extra-terrestrial origin have been received and digitalized by The Aeronautic and Space Administration (that must be going through a defiant phase: “But I want to use feet, not meters!”). Each signal seems to come in two parts: a sequence of n integer values and a non-negative integer t. We’ll not go into details, but researchers found out that a signal encodes two integer values. These can be found as the lower and upper bound of a subrange of the sequence whose absolute value of its sum is closest to t.
You are given the sequence of n integers and the non-negative target t. You are to find a non-empty range of the sequence (i.e. a continuous subsequence) and output its lower index l and its upper index u. The absolute value of the sum of the values of the sequence from the l-th to the u-th element (inclusive) must be at least as close to t as the absolute value of the sum of any other non-empty range.
Input
The input file contains several test cases. Each test case starts with two numbers n and k. Input is terminated by n=k=0. Otherwise, 1<=n<=100000 and there follow n integers with absolute values <=10000 which constitute the sequence. Then follow k queries for this sequence. Each query is a target t with 0<=t<=1000000000.
Output
For each query output 3 numbers on a line: some closest absolute sum and the lower and upper indices of some range where this absolute sum is achieved. Possible indices start with 1 and go up to n.
Sample Input
5 1
-10 -5 0 5 10
3
10 2
-9 8 -7 6 -5 4 -3 2 -1 0
5 11
15 2
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
15 100
0 0
Sample Output
5 4 4
5 2 8
9 1 1
15 1 15
15 1 15
題意:
有一個長度為n的數列,要求從中找出連續的子序列滿足子序列和的絕對值最接近t(輸入值),輸出最接近的值和區間左右端點。
題解:
找尋左右區間,尺取法很明顯,唯獨就是要注意資料範圍。
尺取具體思想也就是區間列舉,更多細節看程式碼。
附上AC程式碼:
#include<iostream> #include<cmath> #include<algorithm> using namespace std; const int inf=1<<30; const int maxn=1e5+1000; int n,k,sum; pair<int,int> g[maxn]; int main() { ios::sync_with_stdio(false); while(cin>>n>>k,n+k) { sum=0; g[0]=make_pair(0,0); for(int i=1;i<=n;i++) { int val; cin>>val; sum+=val;//類似於字首和 g[i]=make_pair(sum,i);//建立對應關係 } sort(g,g+n+1);//排序方便計算 while(k--) { int t; cin>>t; int pre=0,last=1,val=inf,ans,ansl=1,ansr=1; while(last<=n&&val)//遍歷尺取&&當val==0時,即找到與t相等的區間 { int num=g[last].first-g[pre].first;//區間內的和的絕對值 if(abs(num-t)<val)//如果更加接近t { val=abs(num-t); ans=num; ansl=g[pre].second; ansr=g[last].second; } if(num<t)//小了 last++; if(num>t)//大了 pre++; if(pre==last)//區間左右端點相同 last++; } if(ansl>ansr)//因為排序過所以順序不定 swap(ansl,ansr); cout<<ans<<" "<<ansl+1<<" "<<ansr<<endl; } } return 0; }
歡迎評論!