1. 程式人生 > >D - Array Without Local Maximums (dp)

D - Array Without Local Maximums (dp)

題目連結

題意:

有一個長度為N的序列(2≤n≤1e5)滿足關係:

a1≤a2,an≤an−1,ai≤max(ai−1,ai+1)。

每一個ai的範圍是[1,200],有一些ai是確定的,有一些是不確定的,問有多少種情況。答案對998244353取模。

 

相當於說是對於任意三個相鄰的三個數a[i-1],a[i],a[i+1],只排出了a[i]>a[i-1],a[i]>a[i+1]這個情況,也就是一個山峰的樣子

dp[i][j][k],考慮第i個的時候放置j的時候與第i-1個關係是k(0,1,2-- < = >)的方案數

特殊的就是當k=2,也就是說當前這個小於i-1,那麼注意第i-1個不能是小於i-2個了(山峰)

字首和優化,否則超時

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 998244353;
ll dp[100005][205][3],sum;///0<  1=  2>
int a[100005], n, i, j;
int main(){
	cin>>n;
	for(i=1;i<=n;i++)
		cin>>a[i];
	for(i=1;i<=200;i++)
        dp[1][i][0] = (a[1] == -1 || a[1] == i) ? 1:0;///dp[i][j][k] ,number of (the i-th ,lay j ,cmp is k)
	for(i=2;i<=n;i++){
		for(j=1;j<=200;j++)///left == [i]
			dp[i][j][1] = (a[i]==-1 || a[i]==j)?(dp[i-1][j][0]+dp[i-1][j][1]+dp[i-1][j][2])%mod:0;
		sum = 0;
		for(j=1;j<=200;j++){///left < [i]
			dp[i][j][0] = (a[i]==-1 || a[i]==j)?sum:0;
			sum = (sum+dp[i-1][j][0]+dp[i-1][j][1]+dp[i-1][j][2])%mod;
		}
		sum = 0;
		for(j=200;j;j--){///left > [i],
			dp[i][j][2] = (a[i]==-1 || a[i]==j)?sum:0;
			sum = (sum+dp[i-1][j][1]+dp[i-1][j][2])%mod;
		}
	}
	sum = 0;
	for(i=1;i<=200;i++)
		sum = (sum+dp[n][i][1]+dp[n][i][2])%mod;
	cout<<sum<<endl;
	return 0;
}