1. 程式人生 > >華為雲AI-深度學習糖尿病預測

華為雲AI-深度學習糖尿病預測

num eval 鍵值 ges validate amp () slim step

#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sat Sep 15 10:54:53 2018 @author: myhaspl @email:[email protected] 糖尿病預測(多層) csv格式:懷孕次數、葡萄糖、血壓、皮膚厚度,胰島素,bmi,糖尿病血統函數,年齡,結果 """ import tensorflow as tf import os trainCount=10000 inputNodeCount=8 validateCount=50 sampleCount=200 testCount=10 outputNodeCount=1 g=tf.Graph() with g.as_default(): def getWeights(shape,wname): weights=tf.Variable(tf.truncated_normal(shape,stddev=0.1),name=wname) return weights def getBias(shape,bname): biases=tf.Variable(tf.constant(0.1,shape=shape),name=bname) return biases def inferenceInput(x): layer1=tf.nn.relu(tf.add(tf.matmul(x,w1),b1)) result=tf.add(tf.matmul(layer1,w2),b2) return result def inference(x): yp=inferenceInput(x) return tf.sigmoid(yp) def loss(): yp=inferenceInput(x) return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y,logits=yp)) def train(learningRate,trainLoss,trainStep): trainOp=tf.train.AdamOptimizer(learningRate).minimize(trainLoss,global_step=trainStep) return trainOp def evaluate(x): return tf.cast(inference(x)>0.5,tf.float32) def accuracy(x,y,count): yp=evaluate(x) return tf.reduce_mean(tf.cast(tf.equal(yp,y),tf.float32)) def inputFromFile(fileName,skipLines=1): #生成文件名隊列 fileNameQueue=tf.train.string_input_producer([fileName]) #生成記錄鍵值對 reader=tf.TextLineReader(skip_header_lines=skipLines) key,value=reader.read(fileNameQueue) return value def getTestData(fileName,skipLines=1,n=10): #生成文件名隊列 testFileNameQueue=tf.train.string_input_producer([fileName]) #生成記錄鍵值對 testReader=tf.TextLineReader(skip_header_lines=skipLines) testKey,testValue=testReader.read(testFileNameQueue) testRecordDefaults=[[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.]] testDecoded=tf.decode_csv(testValue,record_defaults=testRecordDefaults) pregnancies,glucose,bloodPressure,skinThickness,insulin,bmi,diabetespedigreefunction,age,outcome=tf.train.shuffle_batch(testDecoded,batch_size=n,capacity=1000,min_after_dequeue=1) testFeatures=tf.transpose(tf.stack([pregnancies,glucose,bloodPressure,skinThickness,insulin,bmi,diabetespedigreefunction,age])) testY=tf.transpose([outcome]) return (testFeatures,testY) def getNextBatch(n,values): recordDefaults=[[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.]] decoded=tf.decode_csv(values,record_defaults=recordDefaults) pregnancies,glucose,bloodPressure,skinThickness,insulin,bmi,diabetespedigreefunction,age,outcome=tf.train.shuffle_batch(decoded,batch_size=n,capacity=1000,min_after_dequeue=1) features=tf.transpose(tf.stack([pregnancies,glucose,bloodPressure,skinThickness,insulin,bmi,diabetespedigreefunction,age])) y=tf.transpose([outcome]) return (features,y) with tf.name_scope("inputSample"): samples=inputFromFile("s3://myhaspl/tf_learn/diabetes.csv",1) inputDs=getNextBatch(sampleCount,samples) with tf.name_scope("validateSamples"): validateInputs=getNextBatch(validateCount,samples) with tf.name_scope("testSamples"): testInputs=getTestData("s3://myhaspl/tf_learn/diabetes_test.csv") with tf.name_scope("inputDatas"): x=tf.placeholder(dtype=tf.float32,shape=[None,inputNodeCount],name="input_x") y=tf.placeholder(dtype=tf.float32,shape=[None,outputNodeCount],name="input_y") with tf.name_scope("Variable"): w1=getWeights([inputNodeCount,12],"w1") b1=getBias((),"b1") w2=getWeights([12,outputNodeCount],"w2") b2=getBias((),"b2") trainStep=tf.Variable(0,dtype=tf.int32,name="tcount",trainable=False) with tf.name_scope("train"): trainLoss=loss() trainOp=train(0.005,trainLoss,trainStep) init=tf.global_variables_initializer() with tf.Session(graph=g) as sess: sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) while trainStep.eval()<trainCount: sampleX,sampleY=sess.run(inputDs) sess.run(trainOp,feed_dict={x:sampleX,y:sampleY}) nowStep=sess.run(trainStep) if nowStep%500==0: validate_acc=sess.run(accuracy(sampleX,sampleY,sampleCount)) print "%d次後=>正確率%g"%(nowStep,validate_acc) if nowStep>trainCount: break testInputX,testInputY=sess.run(testInputs) print "測試樣本正確率%g"%sess.run(accuracy(testInputX,testInputY,testCount)) print testInputX,testInputY print sess.run(evaluate(testInputX)) coord.request_stop() coord.join(threads)
500次後=>正確率0.67
1000次後=>正確率0.75
1500次後=>正確率0.81
2000次後=>正確率0.75
2500次後=>正確率0.775
3000次後=>正確率0.765
3500次後=>正確率0.84
4000次後=>正確率0.85
4500次後=>正確率0.77
5000次後=>正確率0.78
5500次後=>正確率0.775
6000次後=>正確率0.835
6500次後=>正確率0.84
7000次後=>正確率0.785
7500次後=>正確率0.805
8000次後=>正確率0.765
8500次後=>正確率0.83
9000次後=>正確率0.835
9500次後=>正確率0.78
10000次後=>正確率0.775
測試樣本正確率0.7
[[1.00e+01 1.01e+02 7.60e+01 4.80e+01 1.80e+02 3.29e+01 1.71e-01 6.30e+01]
 [3.00e+00 7.80e+01 5.00e+01 3.20e+01 8.80e+01 3.10e+01 2.48e-01 2.60e+01]
 [2.00e+00 1.22e+02 7.00e+01 2.70e+01 0.00e+00 3.68e+01 3.40e-01 2.70e+01]
 [2.00e+00 8.80e+01 5.80e+01 2.60e+01 1.60e+01 2.84e+01 7.66e-01 2.20e+01]
 [1.00e+01 1.01e+02 7.60e+01 4.80e+01 1.80e+02 3.29e+01 1.71e-01 6.30e+01]
 [2.00e+00 1.22e+02 7.00e+01 2.70e+01 0.00e+00 3.68e+01 3.40e-01 2.70e+01]
 [1.00e+00 8.90e+01 6.60e+01 2.30e+01 9.40e+01 2.81e+01 1.67e-01 2.10e+01]
 [6.00e+00 1.48e+02 7.20e+01 3.50e+01 0.00e+00 3.36e+01 6.27e-01 5.00e+01]
 [1.00e+00 9.30e+01 7.00e+01 3.10e+01 0.00e+00 3.04e+01 3.15e-01 2.30e+01]
 [2.00e+00 1.22e+02 7.00e+01 2.70e+01 0.00e+00 3.68e+01 3.40e-01 2.70e+01]] [[0.]
 [1.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [1.]
 [0.]
 [0.]]
[[1.]
 [0.]
 [0.]
 [0.]
 [1.]
 [0.]
 [0.]
 [1.]
 [0.]
 [0.]]

感覺華為雲中提供的深度學習服務,就是給你提供一個強大的服務器,然後,你自己編寫代碼。可能還提供了一些更多的功能
技術分享圖片
另外,提供了一個訓練用戶自定義數據的代碼
補充一個概念:
MoXing是華為雲深度學習服務提供的網絡模型開發API。相對於TensorFlow和MXNet等原生API而言,MoXing API讓模型的代碼編寫更加簡單,而且能夠自動獲取高性能的分布式執行能力。

MoXing允許用戶只需要關心數據輸入(input_fn)和模型構建(model_fn)的代碼,就可以實現任意模型在多GPU和分布式下的高性能運行。MoXing-TensorFlow支持原生TensorFlow、Keras、slim等API,幫助構建圖像分類、物體檢測、生成對抗、自然語言處理和OCR等多種模型。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import moxing.tensorflow as mox
slim = tf.contrib.slim

# 用TensorFlow原生的方式定義超參
tf.flags.DEFINE_string(‘data_url‘, None, ‘‘)
tf.flags.DEFINE_string(‘train_dir‘, None, ‘‘)

flags = tf.flags.FLAGS

def train_my_model():

  def input_fn(run_mode, **kwargs):
    # 從TFRecord中獲取輸入數據集
    keys_to_features = {
      ‘image/encoded‘: tf.FixedLenFeature((), tf.string, default_value=‘‘),
      ‘image/format‘: tf.FixedLenFeature((), tf.string, default_value=‘raw‘),
      ‘image/class/label‘: tf.FixedLenFeature(
        [1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)),
    }

    items_to_handlers = {
      ‘image‘: slim.tfexample_decoder.Image(shape=[28, 28, 1], channels=1),
      ‘label‘: slim.tfexample_decoder.Tensor(‘image/class/label‘, shape=[]),
    }
    # 數據集中包含60000張訓練集圖像(數據文件名為mnist_train.tfrecord)
    # 以及10000張驗證集圖像(數據文件名為mnist_test.tfrecord)
    dataset = mox.get_tfrecord(dataset_dir=flags.data_url,
                               file_pattern=‘mnist_train.tfrecord‘ if run_mode == mox.ModeKeys.TRAIN else ‘mnist_test.tfrecord‘,
                               num_samples=60000 if run_mode == mox.ModeKeys.TRAIN else 10000,
                               keys_to_features=keys_to_features,
                               items_to_handlers=items_to_handlers,
                               capacity=1000)

    image, label = dataset.get([‘image‘, ‘label‘])
    # 將圖像像素值轉換為float並統一大小
    image = tf.to_float(image)
    image = tf.image.resize_image_with_crop_or_pad(image, 28, 28)
    return image, label

  def model_fn(inputs, run_mode, **kwargs):
    # 獲取一批輸入數據
    images, labels = inputs
    # 將輸入圖像進行歸一化
    images = tf.subtract(images, 128.0)
    images = tf.div(images, 128.0)
    # 定義函數參數作用域:
    # 1. 所有的卷積和全鏈接L2正則項系數為0
    # 2. 所有的卷積和全鏈接使用截斷正態分布初始化待訓練變量
    # 3. 所有的卷積和全鏈接的激活層采用ReLU
    with slim.arg_scope(
        [slim.conv2d, slim.fully_connected],
        weights_regularizer=slim.l2_regularizer(scale=0.0),
        weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
        activation_fn=tf.nn.relu):
      # 定義網絡
      net = slim.conv2d(images, 32, [5, 5])
      net = slim.max_pool2d(net, [2, 2], 2)
      net = slim.conv2d(net, 64, [5, 5])
      net = slim.max_pool2d(net, [2, 2], 2)
      net = slim.flatten(net)
      net = slim.fully_connected(net, 1024)
      net = slim.dropout(net, 0.5, is_training=True)
      logits = slim.fully_connected(net, 10, activation_fn=None)
    labels_one_hot = slim.one_hot_encoding(labels, 10)
    # 定義交叉熵損失值
    loss = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels_one_hot,
      label_smoothing=0.0, weights=1.0)
    # 由於函數參數作用域定義了所有L2正則項系數為0,所以這裏將不會獲取到任何L2正則項
    regularization_losses = mox.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)

    if len(regularization_losses) > 0:
      regularization_loss = tf.add_n(regularization_losses)
      loss += regularization_loss
    # 定義評價指標
    accuracy_top_1 = tf.reduce_mean(tf.cast(tf.nn.in_top_k(logits, labels, 1), tf.float32))
    accuracy_top_5 = tf.reduce_mean(tf.cast(tf.nn.in_top_k(logits, labels, 5), tf.float32))
    # 必須返回mox.ModelSpec
    return mox.ModelSpec(loss=loss,
                         log_info={‘loss‘: loss, ‘top1‘: accuracy_top_1, ‘top5‘: accuracy_top_5})

  # 獲取一個內置的Optimizer
  optimizer_fn = mox.get_optimizer_fn(‘sgd‘, learning_rate=0.01)

  # 啟動訓練
  mox.run(input_fn=input_fn,
          model_fn=model_fn,
          optimizer_fn=optimizer_fn,
          run_mode=mox.ModeKeys.TRAIN,
          batch_size=50,
          log_dir=flags.train_dir,
          max_number_of_steps=2000,
          log_every_n_steps=10,
          save_summary_steps=50,
          save_model_secs=60)

if __name__ == ‘__main__‘:
  train_my_model()

華為雲AI-深度學習糖尿病預測