1. 程式人生 > >cam shift演算法

cam shift演算法

import cv2
import numpy as np
import matplotlib.pyplot as plt
import time


xs,ys,ws,hs = 0,0,0,0  #selection.x selection.y
xo,yo=0,0 #origin.x origin.y
selectObject = False
trackObject = 0         #追蹤目標,0代表沒有,1代表有,-1代表需要更新目標

#滑鼠移動時會進入這個函式
def onMouse(event, x, y, flags, prams): 
    global xs,ys,ws,
hs,selectObject,xo,yo,trackObject #實時更新滑鼠捕捉矩形大小,設定左上角為起點座標 if selectObject == True: xs = min(x, xo) ys = min(y, yo) ws = abs(x-xo) hs = abs(y-yo) if event == cv2.EVENT_LBUTTONDOWN: #按下 xo,yo = x, y #按下時的origin座標
xs,ys,ws,hs= x, y, 0, 0 #矩形大小初始化 selectObject = True #標記開始選中 elif event == cv2.EVENT_LBUTTONUP: #鬆開 selectObject = False if((ws>0) and (hs>0)): trackObject = -1 #需要追蹤目標 cap = cv2.VideoCapture("C:\\Users\\Shine\\Desktop\\split.mkv"
) #cap = cv2.VideoCapture(0) ret,frame = cap.read() cv2.namedWindow('origin') #新建一個視窗 cv2.setMouseCallback('origin',onMouse) # 設定終止條件,滿足誤差、迭代10次或者至少移動1次 term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) while(True): time_start=time.time() #frame = cv2.imread("C:\\Users\\Shine\\Desktop\\4.jpg") if trackObject != 0: ret,frame = cap.read() #hsv的影象顏色/2 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #BGR2HSV #cv2.imshow('hsv',hsv) #Hue代表顏色(0-180:RGB角度對應顏色),Saturation代表顏色濃度(0-255:白色-彩色),Value代表亮度(0-255:黑色-彩色) #CV_BGR2HSV 在轉換影象的時候是將 H / 2 ---> H #影象中色相H的取值範圍為 0-360 ,所以利用opencv轉換之後得到的H的範圍為 0-180 mask = cv2.inRange(hsv, np.array((0., 30.,10.)), np.array((180.,256.,255.))) #閾值分割 #mask = cv2.inRange(hsv, np.array((0., 0.,0.)), np.array((255.,255.,255.))) #閾值分割 #cv2.imshow('mask',mask) if trackObject == -1: track_window=(xs,ys,ws,hs) #更新捕捉視窗的座標 maskroi = mask[ys:ys+hs, xs:xs+ws] #在mask影象中擷取track_window hsv_roi = hsv[ys:ys+hs, xs:xs+ws] #在hsv影象中擷取track_window print(hsv_roi) #輸出selectObject的HSV值 #cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate ]]) #返回hist roi_hist = cv2.calcHist([hsv_roi], [0], #計算直方圖的通道,這裡使用顏色計算直方圖,所以就直接使用第一個通道; maskroi, [180], #直方圖分成180份 [0.,180.])#表示直方圖中需要統計的各個畫素的值,[0.0, 180.0]表示直方圖能表示RGB所有顏色。 #作直方圖原圖(因為沒有歸一化,最後的值會很大) # roi_hist_f=roi_hist.flatten() #value轉成list # plt.bar(range(0,len(roi_hist_f)*2,2), roi_hist_f) #顯示方便,這裡x軸*2,間隔也*2 cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX) #線性歸一化 roi_hist_f=roi_hist.flatten() #value轉成list plt.bar(range(0,len(roi_hist_f)*2,2), roi_hist_f) #顯示方便,這裡x軸*2,間隔也*2 plt.show() trackObject = 1 #計算反向投影,即計算輸入影象中和選中部分直方圖極值相同的區域,並該區域標記 dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1) dst &= mask #過濾掉原圖中色彩不鮮明的部分 cv2.imshow('dst2',dst) #arg:輸入影象;追蹤目標初始矩形區域;演算法結束條件 ret, track_window = cv2.CamShift(dst, track_window, term_crit) pts = cv2.boxPoints(ret) #生成最小外接矩形 pts = np.int0(pts) #座標值變成整數 #畫線標記 arg:原圖,頂點座標,閉合曲線,BGR畫線顏色,線寬 cv2.polylines(frame,[pts],True,(255,255,0),2) #如果正在標選區域,需要將之前標記時反色區域再反回來 if selectObject == True and ws>0 and hs>0: cv2.imshow('selectObject',frame[ys:ys+hs,xs:xs+ws]) cv2.bitwise_not(frame[ys:ys+hs,xs:xs+ws],frame[ys:ys+hs,xs:xs+ws]) time_end=time.time() needtime=round(time_end-time_start,3) imgText = cv2.putText(frame, str(needtime)+'ms', (50, 50),cv2.FONT_HERSHEY_SIMPLEX, 1.2, (255, 255, 255), 2) cv2.imshow('origin',frame) if cv2.waitKey(10)==27: break cv2.destroyAllWindows()