1. 程式人生 > >【POJ2728】Desert King 最優比率生成樹

【POJ2728】Desert King 最優比率生成樹

esp stream 問題 ring 規劃 i++ names mat else

題目大意:給定一個 N 個點的無向完全圖,邊有兩個不同性質的邊權,求該無向圖的一棵最優比例生成樹,使得性質為 A 的邊權和比性質為 B 的邊權和最小。

題解:要求的答案可以看成是 0-1 分數規劃問題,即:選定一個數 mid,每次重新構建邊權為 \(a[i]-mid*b[i]\) 的圖,再在圖上跑一遍最小生成樹(這裏由於是完全圖,應該采用 Prim 算法)判斷最小值和給定判定的最小值的關系即可,這裏為:若最小值大於 mid,則下界提高,否則上界下降。

代碼如下

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1010;
const double eps=1e-5;

int n;bool vis[maxn];
double cost[maxn][maxn],d[maxn][maxn],mp[maxn][maxn],x[maxn],y[maxn],h[maxn],mx,s[maxn];

inline double calc(int i,int j){
    return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}

void read_and_parse(){
    for(int i=1;i<=n;i++)scanf("%lf%lf%lf",&x[i],&y[i],&h[i]);
    for(int i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++){
            cost[i][j]=cost[j][i]=fabs(h[i]-h[j]);
            d[i][j]=d[j][i]=calc(i,j);
            mx=max(mx,cost[i][j]/d[i][j]);
        }
}

double prim(){
    fill(vis+1,vis+n+1,0);
    double res=0;
    s[1]=0,vis[1]=1;
    for(int i=1;i<=n;i++)s[i]=mp[1][i];
    for(int i=1;i<n;i++){
        int u=0;
        for(int j=1;j<=n;j++)if(!vis[j]&&(!u||s[j]<s[u]))u=j;
        vis[u]=1,res+=s[u];
        for(int v=1;v<=n;v++)if(!vis[v])s[v]=min(s[v],mp[u][v]);
    }
    return res;
}

bool check(double mid){
    for(int i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++)
            mp[i][j]=mp[j][i]=cost[i][j]-mid*d[i][j];
    return prim()>0;
}

void solve(){
    double l=0,r=mx;
    while(r-l>eps){
        double mid=(l+r)/2.0;
        if(check(mid))l=mid;
        else r=mid;
    }
    printf("%.3lf\n",l);
}

int main(){
    while(scanf("%d",&n)&&n){
        read_and_parse();
        solve();
    }
    return 0;
}

【POJ2728】Desert King 最優比率生成樹