sklearn:隨機森林的OOB錯誤
阿新 • • 發佈:2018-12-07
使用載入程式聚合訓練RandomForestClassifier,其中每個新樹適合來自訓練觀察z_i =(x_i,y_i)的引導樣本。 袋外(OOB)錯誤是使用來自各自引導樣本中不包含z_i的樹的預測計算的每個z_i的平均誤差。 這允許RandomForestClassifier在訓練時適合和驗證[1]。
下面的示例演示瞭如何在訓練期間新增每個新樹時測量OOB錯誤。 得到的圖允許從業者接近誤差穩定的n_estimators的合適值。
import matplotlib.pyplot as plt from collections import OrderedDict from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier RANDOM_STATE = 123 # Generate a binary classification dataset. X, y = make_classification(n_samples=500, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=RANDOM_STATE) # NOTE: Setting the `warm_start` construction parameter to `True` disables # support for paralellised ensembles but is necessary for tracking the OOB # error trajectory during training. ensemble_clfs = [ ("RandomForestClassifier, max_features='sqrt'", RandomForestClassifier(warm_start=True, oob_score=True, max_features="sqrt", random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features='log2'", RandomForestClassifier(warm_start=True, max_features='log2', oob_score=True, random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features=None", RandomForestClassifier(warm_start=True, max_features=None, oob_score=True, random_state=RANDOM_STATE)) ] # Map a classifier name to a list of (<n_estimators>, <error rate>) pairs. error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs) # Range of `n_estimators` values to explore. min_estimators = 15 max_estimators = 175 for label, clf in ensemble_clfs: for i in range(min_estimators, max_estimators + 1): clf.set_params(n_estimators=i) clf.fit(X, y) # Record the OOB error for each `n_estimators=i` setting. oob_error = 1 - clf.oob_score_ error_rate[label].append((i, oob_error)) # Generate the "OOB error rate" vs. "n_estimators" plot. for label, clf_err in error_rate.items(): xs, ys = zip(*clf_err) plt.plot(xs, ys, label=label) plt.xlim(min_estimators, max_estimators) plt.xlabel("n_estimators") plt.ylabel("OOB error rate") plt.legend(loc="upper right") plt.show()