1. 程式人生 > >尋找複雜背景下物體的輪廓(OpenCV / C++ - Filling holes)

尋找複雜背景下物體的輪廓(OpenCV / C++ - Filling holes)

一、問題提出

這是一個來自"answerOpenCV"(http://answers.opencv.org/question/200422/opencv-c-filling-holes/)整編如下:

title:OpenCV / C++ - Filling holes

content:

Hello there,

For a personnel projet, I'm trying to detect object and there shadow. These are the result I have for now: Original: 

題,原始問題

Object: 

Shadow: 

The external contours of the object are quite good, but as you can see, my object is not full. Same for the shadow. I would like to get full contours, filled, for the object and its shadow, and I don't know how to get better than this (I juste use "dilate" for the moment). Does someone knows a way to obtain a better result please? Regards.

二、問題分析

從原始圖片上來看,這張圖片的拍攝的背景比較複雜,此外光照也存在偏光現象;而提問者雖然提出的是“將縫隙合併”的要求,實際上他還是想得到目標物體的準確輪廓。

三、問題解決

基於現有經驗,和OpenCV,GOCVhelper等工具,能夠很快得出以下結果

h通道:

去光差:

閾值:

標註:

 

四、演算法關鍵

這套演算法首先解決了這個問題,而且我認為也是穩健魯棒的。其中,演算法中除了經典的“hsv分解->ostu閾值->最大輪廓標註”外,最為關鍵的演算法為頂帽去光差。這個演算法來自於岡薩雷斯《數字影象處理教程》形態學篇章,完全按照書本建議實現,體現良好作用。

#include "stdafx.h"
#include <iostream>
#include <vector>
 
 
using namespace cv;
using namespace std;
 
//find the biggest contour
vector<Point> FindBigestContour(Mat src){    
    int imax = 0;  
    int imaxcontour = -1;  
    std::vector<std::vector<Point> >contours;    
    findContours(src,contours,CV_RETR_LIST,CV_CHAIN_APPROX_SIMPLE);
    for (int i=0;i<contours.size();i++){
        int itmp =  contourArea(contours[i]);
        if (imaxcontour < itmp ){
            imax = i;
            imaxcontour = itmp;
        }
    }
    return contours[imax];
}
 
//remove Light difference by using top hat
Mat moveLightDiff(Mat src,int radius){
    Mat dst;
    Mat srcclone = src.clone();
    Mat mask = Mat::zeros(radius*2,radius*2,CV_8U);
    circle(mask,Point(radius,radius),radius,Scalar(255),-1);
    //top hat
    erode(srcclone,srcclone,mask);
    dilate(srcclone,srcclone,mask);
    dst =  src - srcclone;
    return dst;
}
 
int main( void )
{
    Mat src = imread("e:/sandbox/question.png");
    Mat src_hsv;
    Mat bin;
    Mat src_h;
 
    cvtColor(src,src_hsv,COLOR_BGR2HSV);
    vector<Mat> rgb_planes;
    split(src_hsv, rgb_planes );
    src_h = rgb_planes[0]; // h channel is useful
 
    src_h = moveLightDiff(src_h,40);
    threshold(src_h,bin,100,255,THRESH_OTSU);
 
    //find and draw the biggest contour
    vector<Point> bigestcontrour =  FindBigestContour(bin);
    vector<vector<Point> > controus;
    controus.push_back(bigestcontrour);
    cv::drawContours(src,controus,0,Scalar(0,0,255),3);
    
    waitKey();
    return 0;
}