tensorflow實戰——Tensorflow實現ResNet
阿新 • • 發佈:2018-12-10
#%% # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Typical use: from tensorflow.contrib.slim.nets import resnet_v2 ResNet-101 for image classification into 1000 classes: # inputs has shape [batch, 224, 224, 3] with slim.arg_scope(resnet_v2.resnet_arg_scope(is_training)): net, end_points = resnet_v2.resnet_v2_101(inputs, 1000) ResNet-101 for semantic segmentation into 21 classes: # inputs has shape [batch, 513, 513, 3] with slim.arg_scope(resnet_v2.resnet_arg_scope(is_training)): net, end_points = resnet_v2.resnet_v2_101(inputs, 21, global_pool=False, output_stride=16) """ import collections import tensorflow as tf slim = tf.contrib.slim #使用collections.namedtuple設計ResNet基本Block模組組的name tuple(元組), #但只包含資料結構,不包含具體方法 class Block(collections.namedtuple('Block', ['scope', 'unit_fn', 'args'])): """A named tuple describing a ResNet block. Its parts are: scope: The scope of the `Block`. unit_fn: The ResNet unit function which takes as input a `Tensor` and returns another `Tensor` with the output of the ResNet unit. args: A list of length equal to the number of units in the `Block`. The list contains one (depth, depth_bottleneck, stride) tuple for each unit in the block to serve as argument to unit_fn. """ #降取樣的方法 #factor:取樣因子 def subsample(inputs, factor, scope=None): """Subsamples the input along the spatial dimensions. Args: inputs: A `Tensor` of size [batch, height_in, width_in, channels]. factor: The subsampling factor. scope: Optional variable_scope. Returns: output: A `Tensor` of size [batch, height_out, width_out, channels] with the input, either intact (if factor == 1) or subsampled (if factor > 1). """ if factor == 1: return inputs else: #使用最大池化來實現 return slim.max_pool2d(inputs, [1, 1], stride=factor, scope=scope) #建立卷積層 def conv2d_same(inputs, num_outputs, kernel_size, stride, scope=None): """Strided 2-D convolution with 'SAME' padding. When stride > 1, then we do explicit zero-padding, followed by conv2d with 'VALID' padding. Note that net = conv2d_same(inputs, num_outputs, 3, stride=stride) is equivalent to net = slim.conv2d(inputs, num_outputs, 3, stride=1, padding='SAME') net = subsample(net, factor=stride) whereas net = slim.conv2d(inputs, num_outputs, 3, stride=stride, padding='SAME') is different when the input's height or width is even, which is why we add the current function. For more details, see ResnetUtilsTest.testConv2DSameEven(). Args: inputs: A 4-D tensor of size [batch, height_in, width_in, channels]. num_outputs: An integer, the number of output filters. kernel_size: An int with the kernel_size of the filters. stride: An integer, the output stride. rate: An integer, rate for atrous convolution. scope: Scope. Returns: output: A 4-D tensor of size [batch, height_out, width_out, channels] with the convolution output. """ if stride == 1: return slim.conv2d(inputs, num_outputs, kernel_size, stride=1, padding='SAME', scope=scope) else: #kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1) pad_total = kernel_size - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg #補零操作 inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]]) #建立padding為VALID的卷積層 return slim.conv2d(inputs, num_outputs, kernel_size, stride=stride, padding='VALID', scope=scope) #引數的意義: #net:輸入; #blocks:是之前定義的Block的class的列表 #output_collections用來手機各個end_points的colections @slim.add_arg_scope def stack_blocks_dense(net, blocks, outputs_collections=None): """Stacks ResNet `Blocks` and controls output feature density. First, this function creates scopes for the ResNet in the form of 'block_name/unit_1', 'block_name/unit_2', etc. Args: net: A `Tensor` of size [batch, height, width, channels]. blocks: A list of length equal to the number of ResNet `Blocks`. Each element is a ResNet `Block` object describing the units in the `Block`. outputs_collections: Collection to add the ResNet block outputs. Returns: net: Output tensor """ for block in blocks: with tf.variable_scope(block.scope, 'block', [net]) as sc: #enumerate() 函式用於將一個可遍歷的資料物件(如列表、元組或字串)組合為一個索引序列, #同時列出資料和資料下標,一般用在 for 迴圈當中。 for i, unit in enumerate(block.args): #命名殘差學習單元 with tf.variable_scope('unit_%d' % (i + 1), values=[net]): unit_depth, unit_depth_bottleneck, unit_stride = unit #殘差學習單元的生成函式順序地建立並連線所有的殘差學習單元 net = block.unit_fn(net, depth=unit_depth, depth_bottleneck=unit_depth_bottleneck, stride=unit_stride) #將輸出net新增到collection中 net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net) return net #用來定義某些函式的引數預設值 def resnet_arg_scope(is_training=True, weight_decay=0.0001, #BN的衰減速率預設為0.997 batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True): """Defines the default ResNet arg scope. TODO(gpapan): The batch-normalization related default values above are appropriate for use in conjunction with the reference ResNet models released at https://github.com/KaimingHe/deep-residual-networks. When training ResNets from scratch, they might need to be tuned. Args: is_training: Whether or not we are training the parameters in the batch normalization layers of the model. weight_decay: The weight decay to use for regularizing the model. batch_norm_decay: The moving average decay when estimating layer activation statistics in batch normalization. batch_norm_epsilon: Small constant to prevent division by zero when normalizing activations by their variance in batch normalization. batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the activations in the batch normalization layer. Returns: An `arg_scope` to use for the resnet models. """ batch_norm_params = { 'is_training': is_training, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'updates_collections': tf.GraphKeys.UPDATE_OPS, } with slim.arg_scope( [slim.conv2d], #權重正則器設定為l2正則 weights_regularizer=slim.l2_regularizer(weight_decay), #設定的權重初始化器 weights_initializer=slim.variance_scaling_initializer(), #設定啟用函式 activation_fn=tf.nn.relu, #設定標準化器 normalizer_fn=slim.batch_norm, #將最大池化的padding預設為SAME normalizer_params=batch_norm_params): #**batch_norm_params存放所有未命名的變數引數 with slim.arg_scope([slim.batch_norm], **batch_norm_params): # The following implies padding='SAME' for pool1, which makes feature # alignment easier for dense prediction tasks. This is also used in # https://github.com/facebook/fb.resnet.torch. However the accompanying # code of 'Deep Residual Learning for Image Recognition' uses # padding='VALID' for pool1. You can switch to that choice by setting # slim.arg_scope([slim.max_pool2d], padding='VALID'). with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc: #將幾層巢狀的arg_scope作為結果返回 return arg_sc @slim.add_arg_scope def bottleneck(inputs, depth, depth_bottleneck, stride, outputs_collections=None, scope=None): """Bottleneck residual unit variant with BN before convolutions. This is the full preactivation residual unit variant proposed in [2]. See Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck variant which has an extra bottleneck layer. When putting together two consecutive ResNet blocks that use this unit, one should use stride = 2 in the last unit of the first block. Args: inputs: A tensor of size [batch, height, width, channels]. depth: The depth of the ResNet unit output. depth_bottleneck: The depth of the bottleneck layers. stride: The ResNet unit's stride. Determines the amount of downsampling of the units output compared to its input. rate: An integer, rate for atrous convolution. outputs_collections: Collection to add the ResNet unit output. scope: Optional variable_scope.這個unit的名稱 Returns: The ResNet unit's output. """ with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc: #獲取輸入的最後一個維度,即輸出通道數;min_rank最少為4個維度 depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4) #對輸入進行batch normalization;使用relu函式進行預啟用 preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact') #如果殘差的輸入通道depth_in和輸出通道數depth一致 if depth == depth_in: #使用subsample按步長為stride對inputs進行空間上降取樣 shortcut = subsample(inputs, stride, 'shortcut') else: #否則,使用步長為tride的1x1卷積核改變其通道數,使得與輸出通道,輸入通道數一樣 shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride, normalizer_fn=None, activation_fn=None, scope='shortcut') #定義一個1x1尺寸,步長為1,輸出通道數為depath_bottlenect的卷積 residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1, scope='conv1') #3x3尺寸,步長為stride,輸出通道數為depth_bottleneck的卷積 residual = conv2d_same(residual, depth_bottleneck, 3, stride, scope='conv2') residual = slim.conv2d(residual, depth, [1, 1], stride=1, normalizer_fn=None, activation_fn=None, scope='conv3') #相加 output = shortcut + residual #將結果新增到output return slim.utils.collect_named_outputs(outputs_collections, sc.name, output) def resnet_v2(inputs, blocks, num_classes=None, #是否加上最後的一層全域性平均池化 global_pool=True, #是否加上ResNet網路最前面通常使用的7x7卷積和最大池化 include_root_block=True, reuse=None, #整個網路的名稱 scope=None): """Generator for v2 (preactivation) ResNet models. This function generates a family of ResNet v2 models. See the resnet_v2_*() methods for specific model instantiations, obtained by selecting different block instantiations that produce ResNets of various depths. Args: inputs: A tensor of size [batch, height_in, width_in, channels]. blocks: A list of length equal to the number of ResNet blocks. Each element is a resnet_utils.Block object describing the units in the block. num_classes: Number of predicted classes for classification tasks. If None we return the features before the logit layer. include_root_block: If True, include the initial convolution followed by max-pooling, if False excludes it. If excluded, `inputs` should be the results of an activation-less convolution. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: net: A rank-4 tensor of size [batch, height_out, width_out, channels_out]. If global_pool is False, then height_out and width_out are reduced by a factor of output_stride compared to the respective height_in and width_in, else both height_out and width_out equal one. If num_classes is None, then net is the output of the last ResNet block, potentially after global average pooling. If num_classes is not None, net contains the pre-softmax activations. end_points: A dictionary from components of the network to the corresponding activation. Raises: ValueError: If the target output_stride is not valid. """ with tf.variable_scope(scope, 'resnet_v2', [inputs], reuse=reuse) as sc: end_points_collection = sc.original_name_scope + '_end_points' with slim.arg_scope([slim.conv2d, bottleneck, stack_blocks_dense], #設定預設引數為end_points_collection outputs_collections=end_points_collection): net = inputs if include_root_block: # We do not include batch normalization or activation functions in conv1 # because the first ResNet unit will perform these. Cf. Appendix of [2]. with slim.arg_scope([slim.conv2d], activation_fn=None, normalizer_fn=None): #建立一個步長為2的7x7卷積 net = conv2d_same(net, 64, 7, stride=2, scope='conv1') #在接一個步長為2的3x3最大池化, net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1') #將殘差學習模組組生成好 net = stack_blocks_dense(net, blocks) # This is needed because the pre-activation variant does not have batch # normalization or activation functions in the residual unit output. See # Appendix of [2]. #殘差單位輸出中的歸一化或啟用函式。 net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='postnorm') if global_pool: # Global average pooling. #新增全域性平均池化層 net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True) if num_classes is not None: #新增一個輸出通道為num_classes的1x1卷積 net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='logits') # Convert end_points_collection into a dictionary of end_points. #將collection轉化為dict end_points = slim.utils.convert_collection_to_dict(end_points_collection) if num_classes is not None: #新增一個softmax輸出結果 end_points['predictions'] = slim.softmax(net, scope='predictions') return net, end_points #設計層數為50的網路 def resnet_v2_50(inputs, num_classes=None, global_pool=True, reuse=None, scope='resnet_v2_50'): """ResNet-50 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ #引數意義: #block1:block的名稱; #bottleneck:殘差學習單元 #args:一個列表,其中每個元素都對應一個bottleneck的殘差學習單元 Block('block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), Block( 'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]), Block( 'block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 2)]), Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, global_pool, include_root_block=True, reuse=reuse, scope=scope) def resnet_v2_101(inputs, num_classes=None, global_pool=True, reuse=None, scope='resnet_v2_101'): """ResNet-101 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), Block( 'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]), Block( 'block3', bottleneck, [(1024, 256, 1)] * 22 + [(1024, 256, 2)]), Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, global_pool, include_root_block=True, reuse=reuse, scope=scope) def resnet_v2_152(inputs, num_classes=None, global_pool=True, reuse=None, scope='resnet_v2_152'): """ResNet-152 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), Block( 'block2', bottleneck, [(512, 128, 1)] * 7 + [(512, 128, 2)]), Block( 'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]), Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, global_pool, include_root_block=True, reuse=reuse, scope=scope) def resnet_v2_200(inputs, num_classes=None, global_pool=True, reuse=None, scope='resnet_v2_200'): """ResNet-200 model of [2]. See resnet_v2() for arg and return description.""" blocks = [ Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), Block( 'block2', bottleneck, [(512, 128, 1)] * 23 + [(512, 128, 2)]), Block( 'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]), Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, global_pool, include_root_block=True, reuse=reuse, scope=scope) from datetime import datetime import math import time def time_tensorflow_run(session, target, info_string): num_steps_burn_in = 10 total_duration = 0.0 total_duration_squared = 0.0 for i in range(num_batches + num_steps_burn_in): start_time = time.time() _ = session.run(target) duration = time.time() - start_time if i >= num_steps_burn_in: if not i % 10: print ('%s: step %d, duration = %.3f' % (datetime.now(), i - num_steps_burn_in, duration)) total_duration += duration total_duration_squared += duration * duration mn = total_duration / num_batches vr = total_duration_squared / num_batches - mn * mn sd = math.sqrt(vr) print ('%s: %s across %d steps, %.3f +/- %.3f sec / batch' % (datetime.now(), info_string, num_batches, mn, sd)) batch_size = 32 height, width = 224, 224 inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope(resnet_arg_scope(is_training=False)): net, end_points = resnet_v2_152(inputs, 1000) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) num_batches=100 time_tensorflow_run(sess, net, "Forward")