Tensorflow實戰(五)經典卷積神經網路之實現VGGNet
阿新 • • 發佈:2019-01-03
演算法原理:
VGGNet探索了卷積神經網路深度與其效能之間的關係,通過反覆的堆疊3*3的小型卷積核和2*2的最大池化層,VGGNet成功的構建了16-19層深的卷積神經網路。。
VGGNet擁有5段卷積,每一段內有2-3個卷積層,同時尾部會連線一個最大池化
實驗程式碼:
# -*- coding: utf-8 -*- """ Created on Tue Jan 23 18:57:20 2018 @author: Administrator """ from datetime import datetime import math import time import tensorflow as tf import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' batch_size=32 num_batches=100 def conv_op(input_op,name,kh,kw,n_out,dh,dw,p): n_in=input_op.get_shape()[-1].value with tf.name_scope(name) as scope: kernel=tf.get_variable(scope+"w",shape=[kh,kw,n_in,n_out],dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer_conv2d()) conv=tf.nn.conv2d(input_op,kernel,(1,dh,dw,1),padding='SAME') biases_init_val=tf.constant(0.0,shape=[n_out],dtype=tf.float32) biases=tf.Variable(biases_init_val,trainable=True,name='b') z=tf.nn.bias_add(conv,biases) activtion=tf.nn.relu(z,name=scope) p+=[kernel,biases] return activtion #全連線層 def fc_op(input_op,name,n_out,p): n_in=input_op.get_shape()[-1].value with tf.name_scope(name) as scope: kernel=tf.get_variable(scope+"w",shape=[n_in,n_out],dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer_conv2d()) biases_init_val=tf.constant(0.1,shape=[n_out],dtype=tf.float32) biases=tf.Variable(biases_init_val,trainable=True,name='b') activtion=tf.nn.relu_layer(input_op,kernel,biases,name=scope) p+=[kernel,biases] return activtion def mpool_op(inout_op,name,kh,kw,dh,dw): return tf.nn.max_pool(inout_op,ksize=[1,kh,kw,1], strides=[1,dh,dw,1],padding='SAME',name=name) def interfence_op(input_op,keep_prob): p=[] conv1_1=conv_op(input_op,name="conv1_1",kh=3,kw=3,n_out=64,dh=1,dw=1,p=p) conv1_2=conv_op(conv1_1,name="conv1_2",kh=3,kw=3,n_out=64,dh=1,dw=1,p=p) pool1=mpool_op(conv1_2,name="pool1",kh=2,kw=2,dh=2,dw=2) conv2_1=conv_op(pool1,name="conv2_1",kh=3,kw=3,n_out=128,dh=1,dw=1,p=p) conv2_2=conv_op(conv2_1,name="conv2_2",kh=3,kw=3,n_out=128,dh=1,dw=1,p=p) pool2=mpool_op(conv2_2,name="pool2",kh=2,kw=2,dh=2,dw=2) conv3_1=conv_op(pool2,name="conv3_1",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p) conv3_2=conv_op(conv3_1,name="conv3_2",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p) conv3_3=conv_op(conv3_2,name="conv3_3",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p) pool3=mpool_op(conv3_3,name="pool3",kh=2,kw=2,dh=2,dw=2) conv4_1=conv_op(pool3,name="conv4_1",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p) conv4_2=conv_op(conv4_1,name="conv4_2",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p) conv4_3=conv_op(conv4_2,name="conv4_3",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p) pool4=mpool_op(conv4_3,name="pool4",kh=2,kw=2,dh=2,dw=2) conv5_1=conv_op(pool4,name="conv5_1",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p) conv5_2=conv_op(conv5_1,name="conv5_2",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p) conv5_3=conv_op(conv5_2,name="conv5_3",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p) pool5=mpool_op(conv5_3,name="pool5",kh=2,kw=2,dh=2,dw=2) shp=pool5.get_shape() flattened_shape=shp[1].value*shp[2].value*shp[3].value resh1=tf.reshape(pool5,[-1,flattened_shape],name="resh1") #全連線層 fc6=fc_op(resh1,name='fc6',n_out=4096,p=p) fc6_drop=tf.nn.dropout(fc6,keep_prob,name='fc6_drop') #全連線層 fc7=fc_op(fc6_drop,name='fc7',n_out=4096,p=p) fc7_drop=tf.nn.dropout(fc7,keep_prob,name='fc7_drop') fc8=fc_op(fc7_drop,name='fc8',n_out=1000,p=p) softmax=tf.nn.softmax(fc8) predictions=tf.argmax(softmax,1) return predictions,softmax,fc8,p def time_tensorflow_run(session,target,feed,info_string): num_steps_brun_in=10 total_duration=0.0 total_duration_squared=0.0 for i in range(num_batches+num_steps_brun_in): start_time=time.time() _=session.run(target,feed_dict=feed) duration=time.time()-start_time if i>=num_steps_brun_in: if not i%10: print('%s:step %d,duration=%3f'%(datetime.now(), i-num_steps_brun_in, duration)) total_duration+=duration total_duration_squared+=duration*duration mn=total_duration/num_batches vr=total_duration_squared/num_batches-mn*mn sd=math.sqrt(vr) print('%s: %s across %d steps,%.3f+-%.3f sec/batch'%(datetime.now(), info_string, num_batches, mn, sd)) def run_benchmark(): with tf.Graph().as_default(): image_size=224 images=tf.Variable(tf.random_normal([batch_size,image_size,image_size,3], dtype=tf.float32,stddev=1e-1)) keep_prob=tf.placeholder(tf.float32) predictions,softmax,fc8,p=interfence_op(images,keep_prob) init=tf.global_variables_initializer() sess=tf.Session() sess.run(init) time_tensorflow_run(sess,predictions,{keep_prob:1.0},"forward") objective=tf.nn.l2_loss(fc8) grad=tf.gradients(objective,p) time_tensorflow_run(sess,grad,"forward-backward") run_benchmark()
遇到的錯誤:
Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2Found device 0 with properties:
name: GeForce 820M major: 2 minor: 1 memoryClockRate(GHz): 1.25
pciBusID: 0000:01:00.0
totalMemory: 2.00GiB freeMemory: 1.94GiB
Ignoring visible gpu device (device: 0, name: GeForce 820M, pci bus id: 0000:01:00.0, compute capability: 2.1) with Cuda compute capability 2.1. The minimum required Cuda capability is 3.0.