利用mapreduce簡單統計資訊
阿新 • • 發佈:2018-12-12
利用mapreduce對一下文字進行處理,對每個使用者的上行流量,下行流量 還有宗總流量進行分析,輸出手機號、上行流量、下行流量
1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157995052 13826544101 5C-0E-8B-C7-F1-E0:CMCC 120.197.40.4 4 0 264 0 200 1363157991076 13926435656 20-10-7A-28-CC-0A:CMCC 120.196.100.99 2 4 132 1512 200 1363154400022 13926251106 5C-0E-8B-8B-B1-50:CMCC 120.197.40.4 4 0 240 0 200 1363157993044 18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.196.100.99 iface.qiyi.com 視訊網站 15 12 1527 2106 200 1363157995074 84138413 5C-0E-8B-8C-E8-20:7DaysInn 120.197.40.4 122.72.52.12 20 16 4116 1432 200 1363157993055 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200 1363157995033 15920133257 5C-0E-8B-C7-BA-20:CMCC 120.197.40.4 sug.so.360.cn 資訊保安 20 20 3156 2936 200 1363157983019 13719199419 68-A1-B7-03-07-B1:CMCC-EASY 120.196.100.82 4 0 240 0 200 1363157984041 13660577991 5C-0E-8B-92-5C-20:CMCC-EASY 120.197.40.4 s19.cnzz.com 站點統計 24 9 6960 690 200 1363157973098 15013685858 5C-0E-8B-C7-F7-90:CMCC 120.197.40.4 rank.ie.sogou.com 搜尋引擎 28 27 3659 3538 200 1363157986029 15989002119 E8-99-C4-4E-93-E0:CMCC-EASY 120.196.100.99 www.umeng.com 站點統計 3 3 1938 180 200 1363157992093 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 15 9 918 4938 200 1363157986041 13480253104 5C-0E-8B-C7-FC-80:CMCC-EASY 120.197.40.4 3 3 180 180 200 1363157984040 13602846565 5C-0E-8B-8B-B6-00:CMCC 120.197.40.4 2052.flash2-http.qq.com 綜合門戶 15 12 1938 2910 200 1363157995093 13922314466 00-FD-07-A2-EC-BA:CMCC 120.196.100.82 img.qfc.cn 12 12 3008 3720 200 1363157982040 13502468823 5C-0A-5B-6A-0B-D4:CMCC-EASY 120.196.100.99 y0.ifengimg.com 綜合門戶 57 102 7335 110349 200 1363157986072 18320173382 84-25-DB-4F-10-1A:CMCC-EASY 120.196.100.99 input.shouji.sogou.com 搜尋引擎 21 18 9531 2412 200 1363157990043 13925057413 00-1F-64-E1-E6-9A:CMCC 120.196.100.55 t3.baidu.com 搜尋引擎 69 63 11058 48243 200 1363157988072 13760778710 00-FD-07-A4-7B-08:CMCC 120.196.100.82 2 2 120 120 200 1363157985066 13726238888 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157993055 13560436666 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200
1.思路分析,map會對文字進行一行的讀取,讀取 完之後,根據key值進行分組,然後彙總到reduce中進行集中處理
每一組在mapper中處理完成之後,彙總資訊,然後寫入磁碟
根據需求可知需要從文字中獲取四個資訊,手機號、上傳流量、下載流量、總流量
其中上傳流量、下載流量、總流量需要作為key值進行傳遞,此時需要建立一個Bean類,用來承載資訊
以下為具體程式碼:
package com.oracle.j2ee.mapreduce; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MyFlow { //寫一個BEAN public static class FlowBean implements Writable{ public long up; public long down; public long count; public FlowBean() { } public FlowBean(long up,long down) { this.up=up; this.down=down; this.count=up+down; } public long getUp() { return up; } public void setUp(long up) { this.up = up; } public long getDown() { return down; } public void setDown(long down) { this.down = down; } public long getCount() { return count; } public void setCount(long count) { this.count = count; } @Override public void write(DataOutput out) throws IOException { out.writeLong(up); out.writeLong(down); out.writeLong(count); } @Override public void readFields(DataInput in) throws IOException { up=in.readLong(); down=in.readLong(); count=in.readLong(); } @Override public String toString() { return up+" "+down+" "+count; } } //處理讀取的資料 public static class MyMapper extends Mapper<LongWritable, Text, Text, FlowBean> { @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { String str=value.toString(); String[] news=str.split("\t"); String phone=news[1]; long up=Long.parseLong(news[news.length-3]); long down=Long.parseLong(news[news.length-2]); FlowBean flow=new FlowBean(up, down); context.write(new Text(phone), flow); } } public static class MyReducer extends Reducer<Text, FlowBean, Text, FlowBean>{ @Override protected void reduce(Text key, Iterable<FlowBean> iter, Context context) throws IOException, InterruptedException { long upSum=0; long downSum=0; for(FlowBean arr:iter) { upSum+=arr.getUp(); downSum+=arr.getDown(); } FlowBean flow=new FlowBean(upSum, downSum); context.write(key, flow); } } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { //獲取配置 Configuration conf=new Configuration(); //獲取Job例項 Job job=Job.getInstance(conf); //載入jar包,以方便可以在叢集上執行 job.setJarByClass(MyFlow.class); //載入Mymapper與MyReducer job.setMapperClass(MyMapper.class); job.setReducerClass(MyReducer.class); //載入map輸出key與value的型別 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); //載入reduce的輸出型別 job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); //配置輸入輸出路徑 FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); //提交任務 job.waitForCompletion(true); } }
完成程式碼之後,把專案打成jar包,利用工具上傳到叢集中,將需要處理的文字上傳到叢集的根目錄之下
上傳命令為: hadoop fs -put flow.log /input/
執行jar包, hadoop jar flow.jar com.oracle.j2ee.mapreduce.MyFlow /input/flow.log /output
出現以下資訊一般代表執行成功
[[email protected] apps]# hadoop jar flow.jar com.oracle.j2ee.mapreduce.MyFlow /flow.log /myoutput4 18/09/28 03:42:59 INFO client.RMProxy: Connecting to ResourceManager at hadoop-1/192.168.1.222:8032 18/09/28 03:42:59 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this. 18/09/28 03:43:00 INFO input.FileInputFormat: Total input paths to process : 1 18/09/28 03:43:00 INFO mapreduce.JobSubmitter: number of splits:1 18/09/28 03:43:00 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1538049918445_0009 18/09/28 03:43:01 INFO impl.YarnClientImpl: Submitted application application_1538049918445_0009 18/09/28 03:43:01 INFO mapreduce.Job: The url to track the job: http://hadoop-1:8088/proxy/application_1538049918445_0009/ 18/09/28 03:43:01 INFO mapreduce.Job: Running job: job_1538049918445_0009 18/09/28 03:43:10 INFO mapreduce.Job: Job job_1538049918445_0009 running in uber mode : false 18/09/28 03:43:10 INFO mapreduce.Job: map 0% reduce 0% 18/09/28 03:43:19 INFO mapreduce.Job: map 100% reduce 0% 18/09/28 03:43:27 INFO mapreduce.Job: map 100% reduce 100% 18/09/28 03:43:28 INFO mapreduce.Job: Job job_1538049918445_0009 completed successfully 18/09/28 03:43:28 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=839 FILE: Number of bytes written=214929 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=2284 HDFS: Number of bytes written=551 HDFS: Number of read operations=6 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Launched reduce tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=6508 Total time spent by all reduces in occupied slots (ms)=6420 Total time spent by all map tasks (ms)=6508 Total time spent by all reduce tasks (ms)=6420 Total vcore-milliseconds taken by all map tasks=6508 Total vcore-milliseconds taken by all reduce tasks=6420 Total megabyte-milliseconds taken by all map tasks=6664192 Total megabyte-milliseconds taken by all reduce tasks=6574080 Map-Reduce Framework Map input records=22 Map output records=22 Map output bytes=789 Map output materialized bytes=839 Input split bytes=94 Combine input records=0 Combine output records=0 Reduce input groups=21 Reduce shuffle bytes=839 Reduce input records=22 Reduce output records=21 Spilled Records=44 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=167 CPU time spent (ms)=1570 Physical memory (bytes) snapshot=330604544 Virtual memory (bytes) snapshot=1684975616 Total committed heap usage (bytes)=136450048 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=2190 File Output Format Counters Bytes Written=551
然後檢視對應目錄下輸出檔案的資訊,如下:
[[email protected] apps]# hadoop fs -cat /myoutput4/part-r-00000
13480253104 180 180 360
13502468823 7335 110349 117684
13560436666 1116 954 2070
13560439658 2034 5892 7926
13602846565 1938 2910 4848
13660577991 6960 690 7650
13719199419 240 0 240
13726230503 2481 24681 27162
13726238888 2481 24681 27162
13760778710 120 120 240
13826544101 264 0 264
13922314466 3008 3720 6728
13925057413 11058 48243 59301
13926251106 240 0 240
13926435656 132 1512 1644
15013685858 3659 3538 7197
15920133257 3156 2936 6092
15989002119 1938 180 2118
18211575961 1527 2106 3633
18320173382 9531 2412 11943
84138413 4116 1432 5548
注意事項:
1.需要注意的是,Bean類需要進行序列化,實現writable介面,然後重寫read和write方法,其中需要注意,輸入與輸出資料的一致性,否則會報錯
2.在叢集中執行需要 job.setJarByClass(****.class);
3.如果mapper和reducer作為內部類,需要被靜態static修飾符修飾