pytorch---之mnist
阿新 • • 發佈:2018-12-12
from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) #為CPU設定種子用於生成隨機數,以使得結果是確定的 if args.cuda: torch.cuda.manual_seed(args.seed)#為當前GPU設定隨機種子;如果使用多個GPU,應該使用torch.cuda.manual_seed_all()為所有的GPU設定種子。 kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} """載入資料。組合資料集和取樣器,提供資料上的單或多程序迭代器 引數: dataset:Dataset型別,從其中載入資料 batch_size:int,可選。每個batch載入多少樣本 shuffle:bool,可選。為True時表示每個epoch都對資料進行洗牌 sampler:Sampler,可選。從資料集中取樣樣本的方法。 num_workers:int,可選。載入資料時使用多少子程序。預設值為0,表示在主程序中載入資料。 collate_fn:callable,可選。 pin_memory:bool,可選 drop_last:bool,可選。True表示如果最後剩下不完全的batch,丟棄。False表示不丟棄。 """ train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5)#輸入和輸出通道數分別為1和10 self.conv2 = nn.Conv2d(10, 20, kernel_size=5)#輸入和輸出通道數分別為10和20 self.conv2_drop = nn.Dropout2d()#隨機選擇輸入的通道,將其設為0 self.fc1 = nn.Linear(320, 50)#輸入的向量大小和輸出的大小分別為320和50 self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2))#conv->max_pool->relu x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))#conv->dropout->max_pool->relu x = x.view(-1, 320) x = F.relu(self.fc1(x))#fc->relu x = F.dropout(x, training=self.training)#dropout x = self.fc2(x) return F.log_softmax(x) model = Net() if args.cuda: model.cuda()#將所有的模型引數移動到GPU上 optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) def train(epoch): model.train()#把module設成training模式,對Dropout和BatchNorm有影響 for batch_idx, (data, target) in enumerate(train_loader): if args.cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target)#Variable類對Tensor物件進行封裝,會儲存該張量對應的梯度,以及對生成該張量的函式grad_fn的一個引用。如果該張量是使用者建立的,grad_fn是None,稱這樣的Variable為葉子Variable。 optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target)#負log似然損失 loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.data[0])) def test(epoch): model.eval()#把module設定為評估模式,只對Dropout和BatchNorm模組有影響 test_loss = 0 correct = 0 for data, target in test_loader: if args.cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) output = model(data) test_loss += F.nll_loss(output, target).data[0]#Variable.data pred = output.data.max(1)[1] # get the index of the max log-probability correct += pred.eq(target.data).cpu().sum() test_loss = test_loss test_loss /= len(test_loader) # loss function already averages over batch size print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, args.epochs + 1): train(epoch) test(epoch) --------------------- 本文來自 CodeTutor 的CSDN 部落格 ,全文地址請點選:https://blog.csdn.net/victoriaw/article/details/72354307?utm_source=copy