OpenCV、Skimage、PIL影象處理的細節差異
阿新 • • 發佈:2018-12-13
在進行影象處理時一點要注意 各個庫之間的細微差異,還有要注意影象放縮時插值方法的選擇,而且即使是相同的插值方法,各個庫的實現也不同,結果也會有些許差異
PIL(RGB)
首先介紹PIL(Python Imaging Library)這個庫,這是Python中最基礎的影象處理庫,主要注意對圖片進行處理時w,h的變化.
from PIL import Image import numpy as np image = Image.open('test.jpg') # 圖片是400x300 寬x高 print type(image) # out: PIL.JpegImagePlugin.JpegImageFile print image.size # out: (400,300) print image.mode # out: 'RGB' print image.getpixel((0,0)) # out: (143, 198, 201) # resize w*h image = image.resize((200,100),Image.NEAREST) print image.size # out: (200,100) ''' 程式碼解釋 **注意image是 class:`~PIL.Image.Image` object**,它有很多屬性,比如它的size是(w,h),通道是RGB,,他也有很多方法,比如獲取getpixel((x,y))某個位置的畫素,得到三個通道的值,x最大可取w-1,y最大可取h-1 比如resize方法,可以實現圖片的放縮,具體引數如下 resize(self, size, resample=0) method of PIL.Image.Image instance Returns a resized copy of this image. :param size: The requested size in pixels, as a 2-tuple: (width, height). 注意size是 (w,h),和原本的(w,h)保持一致 :param resample: An optional resampling filter. This can be one of :py:attr:`PIL.Image.NEAREST`, :py:attr:`PIL.Image.BOX`, :py:attr:`PIL.Image.BILINEAR`, :py:attr:`PIL.Image.HAMMING`, :py:attr:`PIL.Image.BICUBIC` or :py:attr:`PIL.Image.LANCZOS`. If omitted, or if the image has mode "1" or "P", it is set :py:attr:`PIL.Image.NEAREST`. See: :ref:`concept-filters`. 注意這幾種插值方法,預設NEAREST最近鄰(分割常用),分類常用BILINEAR雙線性,BICUBIC立方 :returns: An :py:class:`~PIL.Image.Image` object. ''' image = np.array(image,dtype=np.float32) # image = np.array(image)預設是uint8 print image.shape # out: (100, 200, 3) # 神奇的事情發生了,w和h換了,變成(h,w,c)了 # 注意ndarray中是 行row x 列col x 維度dim 所以行數是高,列數是寬
Skimage(RGB)
import skimage from skimage import io,transform import numpy as np image= io.imread('test.jpg',as_grey=False) # 第一個引數是檔名可以是網路地址,第二個引數預設為False,True時為灰度圖 print type(image) # out: numpy.ndarray print image.dtype # out: dtype('uint8') print image.shape # out: (300, 400, 3) (h,w,c)前面介紹了ndarray的特點 # mode也是RGB print image ''' 注意此時image裡都是整數uint8,範圍[0-255] array([ [ [143, 198, 201 (dim=3)],[143, 198, 201],... (w=200)], [ [143, 198, 201],[143, 198, 201],... ], ...(h=100) ], dtype=uint8) ''' image= io.imread('test.jpg',as_grey=True) print image.shape # out: (300, 400) print image ''' 此時image範圍變為[0-1] array([[ 0.73148549, 0.73148549, 0.73148549, ..., 0.73148549, 0.73148549, 0.73148549], [ 0.73148549, 0.73148549, 0.73148549, ..., 0.73148549, .....]]) ''' print image.dtype # out: dtype('float64') image = io.imread('test.jpg',as_grey=False) # h*w image = transform.resize(image,(100, 200),order=1) # order預設是1,雙線性 #resize後image範圍又變成[0-1] print image.dtype # out: dtype('float64') print image.shape # out: (100, 200, 3) print image ''' array([[[ 0.56078431, 0.77647059, 0.78823529], [ 0.56078431, 0.77647059, 0.78823529], [ 0.56078431, 0.77647059, 0.78823529], ..., ...]]) ''' ''' resize函式介面 resize(image, output_shape, order=1, mode='constant', cval=0, clip=True, preserve_range=False) order : int, optional The order of interpolation. The order has to be in the range 0-5: - 0: Nearest-neighbor - 1: Bi-linear (default) - 2: Bi-quadratic - 3: Bi-cubic - 4: Bi-quartic - 5: Bi-quintic ''' print skimage.img_as_float(image).dtype # out: float64 # img_as_float可以把image轉為double,即float64
OpenCV(python版)(BGR)
import cv2 import numpy as np image = cv2.imread('test.jpg') print type(image) # out: numpy.ndarray print image.dtype # out: dtype('uint8') print image.shape # out: (300, 400, 3) (h,w,c) 和skimage類似 print image # BGR ''' array([ [ [143, 198, 201 (dim=3)],[143, 198, 201],... (w=200)], [ [143, 198, 201],[143, 198, 201],... ], ...(h=100) ], dtype=uint8) ''' # w*h image = cv2.resize(image,(100,200),interpolation=cv2.INTER_LINEAR) print image.dtype # out: dtype('uint8') print image.shape # out: (200, 100, 3) ''' 注意注意注意 和skimage不同 resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) 關鍵字引數為dst,fx,fy,interpolation dst為縮放後的影象 dsize為(w,h),但是image是(h,w,c) fx,fy為影象x,y方向的縮放比例, interplolation為縮放時的插值方式,有三種插值方式: cv2.INTER_AREA:使用象素關係重取樣。當影象縮小時候,該方法可以避免波紋出現。當影象放大時,類似於 CV_INTER_NN方法 cv2.INTER_CUBIC: 立方插值 cv2.INTER_LINEAR: 雙線形插值 cv2.INTER_NN: 最近鄰插值 [詳細可檢視該部落格](http://www.tuicool.com/articles/rq6fIn) ''' ''' cv2.imread(filename, flags=None): flag: cv2.IMREAD_COLOR 1: Loads a color image. Any transparency of image will be neglected. It is the default flag. 正常的3通道圖 cv2.IMREAD_GRAYSCALE 0: Loads image in grayscale mode 單通道灰度圖 cv2.IMREAD_UNCHANGED -1: Loads image as such including alpha channel 4通道圖 注意: 預設應該是cv2.IMREAD_COLOR,如果你cv2.imread('gray.png'),雖然圖片是灰度圖,但是讀入後會是3個通道值一樣的3通道圖片 '''
作者:爆米花好美啊
來源:CSDN
原文:https://blog.csdn.net/u013010889/article/details/54347089
版權宣告:本文為博主原創文章,轉載請附上博文連結!