初識TensorFlow之將自己訓練好的模型遷移到電腦攝像頭和外接海康攝像頭上,並在視訊中實時檢測
阿新 • • 發佈:2018-12-14
有了訓練好的模型之後,可以將模型遷移到電腦或者手機上
電腦:
# -*- coding: utf-8 -*- """ @author: Terry n """ # Imports import numpy as np import os import sys import tensorflow as tf import cv2 # if tf.__version__ < '1.4.0': # raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!') os.chdir('D:\\object_detection_api\\models-master\\research\\object_detection') # Env setup # This is needed to display the images. # %matplotlib inline # This is needed since the notebook is stored in the object_detection folder. sys.path.append("..") # Object detection imports from utils import label_map_util from utils import visualization_utils as vis_util # Model preparation # What model to download. #MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' # [30,21] best # MODEL_NAME = 'ssd_inception_v2_coco_2017_11_17' #[42,24] # MODEL_NAME = 'faster_rcnn_inception_v2_coco_2017_11_08' #[58,28] # MODEL_NAME = 'faster_rcnn_resnet50_coco_2017_11_08' #[89,30] # MODEL_NAME = 'faster_rcnn_resnet50_lowproposals_coco_2017_11_08' #[64, ] # MODEL_NAME = 'rfcn_resnet101_coco_2017_11_08' #[106,32] # MODEL_NAME = 'faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28' # MODEL_NAME = 'ssdlite_mobilenet_v2_coco_2018_05_09' MODEL_NAME = 'fod_detection' # Path to frozen detection graph. This is the actual model that is used for the object detection. PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box. #PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') PATH_TO_LABELS = os.path.join('data', 'fod.pbtxt') #NUM_CLASSES = 90 NUM_CLASSES = 1 # Load a (frozen) Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') # Loading label map label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) # Helper code def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) # Size, in inches, of the output images. # IMAGE_SIZE = (12, 8) with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: # Definite input and output Tensors for detection_graph image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') # the video to be detected, eg, "test.mp4" here vidcap = cv2.VideoCapture(0) # Default resolutions of the frame are obtained.The default resolutions are system dependent. # We convert the resolutions from float to integer. frame_width = int(vidcap.get(3)) frame_height = int(vidcap.get(4)) while (True): ret, image = vidcap.read() if ret == True: # image_np = load_image_into_numpy_array(image) image_np = image # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) # Actual detection. (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) print(scores) cv2.imshow("capture",image_np) if cv2.waitKey(1) & 0xFF == ord('q'): ret = False # Break the loop else: break vidcap.release() cv2.destroyAllWindows()
注意:1,第十八行定位到你的object_detection資料夾下。
2,43行,47行定位到模型位置。50,51行相繼修改。54行num_classes為1
3,注意,將此model_video的python檔案定位到object_detection下,再在anaconda下執行。
海康攝像頭:
model_video.py
# -*- coding: utf-8 -*- """ @author: Terry n """ # Imports import numpy as np import os import sys import tensorflow as tf import cv2 # if tf.__version__ < '1.4.0': # raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!') os.chdir('D:\\object_detection_api\\models-master\\research\\object_detection') # Env setup # This is needed to display the images. # %matplotlib inline # This is needed since the notebook is stored in the object_detection folder. sys.path.append("..") # Object detection imports from utils import label_map_util from utils import visualization_utils as vis_util # Model preparation # What model to download. #MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' # [30,21] best # MODEL_NAME = 'ssd_inception_v2_coco_2017_11_17' #[42,24] # MODEL_NAME = 'faster_rcnn_inception_v2_coco_2017_11_08' #[58,28] # MODEL_NAME = 'faster_rcnn_resnet50_coco_2017_11_08' #[89,30] # MODEL_NAME = 'faster_rcnn_resnet50_lowproposals_coco_2017_11_08' #[64, ] # MODEL_NAME = 'rfcn_resnet101_coco_2017_11_08' #[106,32] # MODEL_NAME = 'faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28' # MODEL_NAME = 'ssdlite_mobilenet_v2_coco_2018_05_09' # MODEL_NAME = 'fod_detection' MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' # Path to frozen detection graph. This is the actual model that is used for the object detection. PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box. # PATH_TO_LABELS = os.path.join('data', 'fod.pbtxt') PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') NUM_CLASSES = 90 # NUM_CLASSES = 1 # Load a (frozen) Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') # Loading label map label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) # Helper code def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) # Size, in inches, of the output images. # IMAGE_SIZE = (12, 8) with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: # Definite input and output Tensors for detection_graph image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') # the video to be detected, eg, "test.mp4" here url = 'rtsp://admin:
[email protected]:554/11' # vidcap = cv2.VideoCapture(0) # Default resolutions of the frame are obtained.The default resolutions are system dependent. # We convert the resolutions from float to integer. while (True): vidcap = cv2.VideoCapture(url) ret, image = vidcap.read() frame_width = int(vidcap.get(3)) frame_height = int(vidcap.get(4)) if ret == True: # image_np = load_image_into_numpy_array(image) image_np = image # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) # Actual detection. (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) print(scores) cv2.imshow("capture",image_np) if cv2.waitKey(20) & 0xFF == ord('q'): ret = False # Break the loop else: break vidcap.release() cv2.destroyAllWindows()
3,在視訊中實時檢測
video_detection.py
# By Terry_n
# https://space.bilibili.com/275177832
# 可以放在任何資料夾下執行(前提正確配置API[環境變數])
# 輸出視訊沒有聲音,pr可解決一切
import numpy as np
import os
import sys
import tensorflow as tf
import cv2
import time
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
start = time.time()
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
cv2.setUseOptimized(True) # 加速cv
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
# 可能要改的內容
######################################################
PATH_TO_CKPT = 'D:\\object_detection_api\\models-master\\research\\object_detection\\fod_detection\\fod_frozen_inference_graph.pb' # 模型及標籤地址
PATH_TO_LABELS = 'D:\\object_detection_api\\models-master\\research\\object_detection\\data\\fod.pbtxt'
video_PATH = "D:\\object_detection_api\\models-master\\research\\object_detection\\test_video\\cycling.mp4" # 要檢測的視訊
out_PATH = "D:\\object_detection_api\\models-master\\research\\object_detection\\output_video\\out_cycling1.mp4" # 輸出地址
NUM_CLASSES = 1 # 檢測物件個數
fourcc = cv2.VideoWriter_fourcc(*'DIVX') # 編碼器型別(可選)
# 編碼器: DIVX , XVID , MJPG , X264 , WMV1 , WMV2
######################################################
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# 讀取視訊
video_cap = cv2.VideoCapture(video_PATH)
fps = int(video_cap.get(cv2.CAP_PROP_FPS)) # 幀率
width = int(video_cap.get(3)) # 視訊長,寬
hight = int(video_cap.get(4))
videoWriter = cv2.VideoWriter(out_PATH, fourcc, fps, (width, hight))
config = tf.ConfigProto()
config.gpu_options.allow_growth = True # 減小視訊記憶體佔用
with detection_graph.as_default():
with tf.Session(graph=detection_graph, config=config) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
num = 0
while True:
ret, frame = video_cap.read()
if ret == False: # 沒檢測到就跳出
break
num += 1
print(num) # 輸出檢測到第幾幀了
# print(num/fps) # 檢測到第幾秒了
image_np = frame
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4)
# 寫視訊
videoWriter.write(image_np)
videoWriter.release()
end = time.time()
print("Execution Time: ", end - start)