1. 程式人生 > >UVA 796 - Critical Links (求橋)

UVA 796 - Critical Links (求橋)

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=737

In a computer network a link L, which interconnects two servers, is considered critical if there are at least two servers A and B such that all network interconnection paths between A and B pass through L. Removing a critical link generates two disjoint sub-networks such that any two servers of a sub-network are interconnected. For example, the network shown in figure 1 has three critical links that are marked bold: 0 -1, 3 - 4 and 6 - 7.

Figure 1: Critical links

It is known that:

1.

the connection links are bi-directional;

2.

a server is not directly connected to itself;

3.

two servers are interconnected if they are directly connected or if they are interconnected with the same server;

4.

the network can have stand-alone sub-networks.
Write a program that finds all critical links of a given computer network.

Input 

The program reads sets of data from a text file. Each data set specifies the structure of a network and has the format
The first line contains a positive integer $no\_of\_servers$(possibly 0) which is the number of network servers. The ne $no\_of\_servers$ lines, one for each server in the network, are randomly ordered and show the way servers are connected. The line corresponding to server

k$0 \le k \le no\_of\_servers - 1$, specifies the number of direct connections of serverk and the servers which are directly connected to serverk. Servers are represented by integers from 0 to $no\_of\_servers - 1$. Input data are correct. The first data set from sample input below corresponds to the network in figure 1, while the second data set specifies an empty network.

 

#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <map>
#include <vector>
using namespace std;
/*
*  求 無向圖的割點和橋
*  可以找出割點和橋,求刪掉每個點後增加的連通塊。
*  需要注意重邊的處理,可以先用矩陣存,再轉鄰接表,或者進行判重
*/
const int MAXN = 10010;
const int MAXM = 100010;
struct Edge
{
    int to,next;
    bool cut;//是否為橋的標記
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN];
int Index,top;
bool Instack[MAXN];
bool cut[MAXN];
int add_block[MAXN];//刪除一個點後增加的連通塊
int bridge;

void addedge(int u,int v)
{
    edge[tot].to = v;edge[tot].next = head[u];edge[tot].cut = false;
    head[u] = tot++;
}
void Tarjan(int u,int pre)
{
    int v;
    Low[u] = DFN[u] = ++Index;
    Stack[top++] = u;
    Instack[u] = true;
    int son = 0;
    for(int i = head[u];i != -1;i = edge[i].next)
    {
        v = edge[i].to;
        if(v == pre)continue;
        if( !DFN[v] )
        {
            son++;
            Tarjan(v,u);
            if(Low[u] > Low[v])Low[u] = Low[v];
            //橋
            //一條無向邊(u,v)是橋,當且僅當(u,v)為樹枝邊,且滿足DFS(u)<Low(v)。
            if(Low[v] > DFN[u])
            {
                bridge++;
                edge[i].cut = true;
                edge[i^1].cut = true;
            }
            //割點
            //一個頂點u是割點,當且僅當滿足(1)或(2) (1) u為樹根,且u有多於一個子樹。
            //(2) u不為樹根,且滿足存在(u,v)為樹枝邊(或稱父子邊,
            //即u為v在搜尋樹中的父親),使得DFS(u)<=Low(v)
            if(u != pre && Low[v] >= DFN[u])//不是樹根
            {
                cut[u] = true;
                add_block[u]++;
            }
        }
        else if( Low[u] > DFN[v])
             Low[u] = DFN[v];
    }
    //樹根,分支數大於1
    if(u == pre && son > 1)cut[u] = true;
    if(u == pre)add_block[u] = son - 1;
    Instack[u] = false;
    top--;
}

void solve(int N)
{
    memset(DFN,0,sizeof(DFN));
    memset(Instack,false,sizeof(Instack));
    memset(add_block,0,sizeof(add_block));
    memset(cut,false,sizeof(cut));
    Index = top = 0;
    bridge = 0;
    for(int i = 1;i <= N;i++)
        if( !DFN[i] )
            Tarjan(i,i);
    printf("%d critical links\n",bridge);
    vector<pair<int,int> >ans;
    for(int u = 1;u <= N;u++)
        for(int i = head[u];i != -1;i = edge[i].next)
            if(edge[i].cut && edge[i].to > u)
            {
                ans.push_back(make_pair(u,edge[i].to));
            }
    sort(ans.begin(),ans.end());
    //按順序輸出橋
    for(int i = 0;i < ans.size();i++)
        printf("%d - %d\n",ans[i].first-1,ans[i].second-1);
    printf("\n");
}
void init()
{
    tot = 0;
    memset(head,-1,sizeof(head));
}
//處理重邊
map<int,int>mapit;
inline bool isHash(int u,int v)
{
    if(mapit[u*MAXN+v])return true;
    if(mapit[v*MAXN+u])return true;
    mapit[u*MAXN+v] = mapit[v*MAXN+u] = 1;
    return false;
}
int main()
{
    int n;
    while(scanf("%d",&n) == 1)
    {
        init();
        int u;
        int k;
        int v;
        //mapit.clear();
        for(int i = 1;i <= n;i++)
        {
            scanf("%d (%d)",&u,&k);
            u++;
            //這樣加邊,要保證正邊和反邊是相鄰的,建無向圖
            while(k--) 
            {
                scanf("%d",&v);
                v++;//保證點從1開始;
                //if(v <= u)continue;
                //if(isHash(u,v))continue;
                addedge(u,v);
                addedge(v,u);
            }
        }
        solve(n);
    }
    return 0;
}