載入resNet預訓練模型
阿新 • • 發佈:2018-12-17
# Assume input range is [0, 1] class ResNet101FeatureExtractor(nn.Module): def __init__(self, use_input_norm=True, device=torch.device('cpu')): super(ResNet101FeatureExtractor, self).__init__() model = torchvision.models.resnet101(pretrained=True) self.use_input_norm = use_input_norm if self.use_input_norm: mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device) # [0.485-1, 0.456-1, 0.406-1] if input in range [-1,1] std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device) # [0.229*2, 0.224*2, 0.225*2] if input in range [-1,1] self.register_buffer('mean', mean) self.register_buffer('std', std) self.features = nn.Sequential(*list(model.children())[:8]) # No need to BP to variable for k, v in self.features.named_parameters(): v.requires_grad = False def forward(self, x): if self.use_input_norm: x = (x - self.mean) / self.std output = self.features(x) return output