tensorflow利用預訓練模型進行目標檢測(一):預訓練模型的使用
一、運行樣例
官網鏈接:https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb 但是一直有問題,沒有運行起來,所以先使用一個別人寫好的代碼
上一個在ubuntu下可用的代碼鏈接:https://gitee.com/bubbleit/JianDanWuTiShiBie 使用python2運行,python3可能會有問題
該代碼由https://gitee.com/talengu/JianDanWuTiShiBie/tree/master而來,經過我部分的調整與修改,代碼包含在ODtest.py文件中,/ssd_mobilenet_v1_coco_11_06_2017中存儲的是預訓練模型
原始代碼如下
import numpy as np from matplotlib import pyplot as plt import os import tensorflow as tf from PIL import Image from utils import label_map_util from utils import visualization_utils as vis_util import datetime # 關閉tensorflow警告 os.environ[‘TF_CPP_MIN_LOG_LEVEL‘]=‘3‘ detection_graph = tf.Graph()View Code# 加載模型數據------------------------------------------------------------------------------------------------------- def loading(): with detection_graph.as_default(): od_graph_def = tf.GraphDef() PATH_TO_CKPT = ‘ssd_mobilenet_v1_coco_11_06_2017‘ + ‘/frozen_inference_graph.pb‘ with tf.gfile.GFile(PATH_TO_CKPT,‘rb‘) as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name=‘‘) return detection_graph # Detection檢測------------------------------------------------------------------------------------------------------- def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = os.path.join(‘data‘, ‘mscoco_label_map.pbtxt‘) label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=90, use_display_name=True) category_index = label_map_util.create_category_index(categories) def Detection(image_path="images/image1.jpg"): loading() with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: # for image_path in TEST_IMAGE_PATHS: image = Image.open(image_path) # the array based representation of the image will be used later in order to prepare the # result image with boxes and labels on it. image_np = load_image_into_numpy_array(image) # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) image_tensor = detection_graph.get_tensor_by_name(‘image_tensor:0‘) # Each box represents a part of the image where a particular object was detected. boxes = detection_graph.get_tensor_by_name(‘detection_boxes:0‘) # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. scores = detection_graph.get_tensor_by_name(‘detection_scores:0‘) classes = detection_graph.get_tensor_by_name(‘detection_classes:0‘) num_detections = detection_graph.get_tensor_by_name(‘num_detections:0‘) # Actual detection. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Visualization of the results of a detection.將識別結果標記在圖片上 vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) # output result輸出 for i in range(3): if classes[0][i] in category_index.keys(): class_name = category_index[classes[0][i]][‘name‘] else: class_name = ‘N/A‘ print("物體:%s 概率:%s" % (class_name, scores[0][i])) # matplotlib輸出圖片 # Size, in inches, of the output images. IMAGE_SIZE = (20, 12) plt.figure(figsize=IMAGE_SIZE) plt.imshow(image_np) plt.show() # 運行 Detection()
git clone到本地後執行有幾個錯誤
問題1
報錯信息: UnicodeDecodeError: ‘ascii‘ codec can‘t decode byte 0xe5 in position 1: ordinal not in range(128)
solution:參考:https://www.cnblogs.com/QuLory/p/3615584.html
主要錯誤是上面最後一行的Unicode解碼問題,網上搜索說是讀取文件時使用的編碼默認時ascii而不是utf8,導致的錯誤;
在代碼中加上如下幾句即可。
import sys reload(sys) sys.setdefaultencoding(‘utf8‘)
問題1
報錯信息:_tkinter.TclError: no display name and no $DISPLAY environment variable 詳情:
Traceback (most recent call last): File "ODtest.py", line 103, in <module> Detection() File "ODtest.py", line 96, in Detection plt.figure(figsize=IMAGE_SIZE) File "/usr/local/lib/python2.7/dist-packages/matplotlib/pyplot.py", line 533, in figure **kwargs) File "/usr/local/lib/python2.7/dist-packages/matplotlib/backend_bases.py", line 161, in new_figure_manager return cls.new_figure_manager_given_figure(num, fig) File "/usr/local/lib/python2.7/dist-packages/matplotlib/backends/_backend_tk.py", line 1046, in new_figure_manager_given_figure window = Tk.Tk(className="matplotlib") File "/usr/lib/python2.7/lib-tk/Tkinter.py", line 1822, in __init__ self.tk = _tkinter.create(screenName, baseName, className, interactive, wantobjects, useTk, sync, use) _tkinter.TclError: no display name and no $DISPLAY environment variableView Code
solution:參考:https://blog.csdn.net/qq_22194315/article/details/77984423
純代碼解決方案
這也是大部分人在網上諸如stackoverflow的問答平臺得到的解決方案,在引入pyplot、pylab之前,要先更改matplotlib的後端模式為”Agg”。直接貼代碼吧!
# do this before importing pylab or pyplot Import matplotlib matplotlib.use(‘Agg‘) import matplotlib.pyplot aspltView Code
修改之後代碼為:
#!usr/bin/python # -*- coding: utf-8 -*- import numpy as np import matplotlib matplotlib.use(‘Agg‘) import matplotlib.pyplot from matplotlib import pyplot as plt import os import tensorflow as tf from PIL import Image from utils import label_map_util from utils import visualization_utils as vis_util import datetime # 關閉tensorflow警告 import sys reload(sys) sys.setdefaultencoding(‘utf8‘) os.environ[‘TF_CPP_MIN_LOG_LEVEL‘]=‘3‘ detection_graph = tf.Graph() # 加載模型數據------------------------------------------------------------------------------------------------------- def loading(): with detection_graph.as_default(): od_graph_def = tf.GraphDef() PATH_TO_CKPT = ‘ssd_mobilenet_v1_coco_11_06_2017‘ + ‘/frozen_inference_graph.pb‘ with tf.gfile.GFile(PATH_TO_CKPT, ‘rb‘) as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name=‘‘) return detection_graph # Detection檢測------------------------------------------------------------------------------------------------------- def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = os.path.join(‘data‘, ‘mscoco_label_map.pbtxt‘) label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=90, use_display_name=True) category_index = label_map_util.create_category_index(categories) def Detection(image_path="images/image1.jpg"): loading() with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: # for image_path in TEST_IMAGE_PATHS: image = Image.open(image_path) # the array based representation of the image will be used later in order to prepare the # result image with boxes and labels on it. image_np = load_image_into_numpy_array(image) # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) image_tensor = detection_graph.get_tensor_by_name(‘image_tensor:0‘) # Each box represents a part of the image where a particular object was detected. boxes = detection_graph.get_tensor_by_name(‘detection_boxes:0‘) # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. scores = detection_graph.get_tensor_by_name(‘detection_scores:0‘) classes = detection_graph.get_tensor_by_name(‘detection_classes:0‘) num_detections = detection_graph.get_tensor_by_name(‘num_detections:0‘) # Actual detection. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Visualization of the results of a detection.將識別結果標記在圖片上 vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) # output result輸出 for i in range(3): if classes[0][i] in category_index.keys(): class_name = category_index[classes[0][i]][‘name‘] else: class_name = ‘N/A‘ print("object:%s gailv:%s" % (class_name, scores[0][i])) # matplotlib輸出圖片 # Size, in inches, of the output images. IMAGE_SIZE = (20, 12) plt.figure(figsize=IMAGE_SIZE) plt.imshow(image_np) plt.show() # 運行 Detection()View Code
運行結果:
如無意外,加上時間統計函數,調用已下載好的預訓練模型即可
二、使用與訓練模型
aa
tensorflow利用預訓練模型進行目標檢測(一):預訓練模型的使用