生物學家應該這樣學R繪圖
資料視覺化在科研結果展示中佔有相當重要的地位,人們對圖形的理解和可接受程度往往遠比數字和表格要容易,而R無疑是資料視覺化工具中的佼佼者,下面是生信技能樹jimmy師兄推薦的關於在生物資訊學中如何使用R繪圖的課程:
作者是Maria Nattestad,生物資訊學專業的博士,為冷泉港的OMGenomics實驗室的創始人。
為什麼推薦這個課程
作者雖然是生物資訊學資料分析領域的實力戰將,但是卻扔能不忘初心,錄製並且整理這樣的初學者教程,而且把生物資訊學領域的資料特性高度整合到了R繪圖知識點裡面。不再是大家看到的其它R教程那樣視覺化一些商業金融網際網路資料,在學習的過程中能加上對生物資訊學的理解,包括基因組,染色體,基因結構,GWAS。BED,CNV,GFF等等。
而且課程非常簡潔,系統,絕不拖拉,不會耗費大家的時間。
當然,你首先得自己安裝好 R and RStudio
課程大綱
Lesson 1: A quick start guide — From data to plot with a few magic words
Lesson 2: Importing and downloading data — From Excel, text files, or publicly available data, this lesson covers how to get all of it into R and addresses a number of common problems with data formatting issues.
Lesson 3: Interrogating your data — Getting quick summary statistics and navigating data frames.
Lesson 4: Filtering and cleaning up data — Kicking out the data that annoys you and polishing up the rest
Lesson 5: Tweaking everything in your plots — Everything from color schemes to fonts to grid lines and tick marks, this lesson will show you how to change just about anything in a plot. Especially useful for creating plots for publication.
Lesson 6: Plot anything! — Quick guide to each plot type including which types of data fit into each one.
-
Bar plots
-
Scatter plots
-
Box plots
-
Violin plots
-
Density plots
-
Dot-plots
-
Line-plots for time-course data
-
Venn diagrams
Lesson 7: Multifaceted figures — Splitting up your data by some column into multiple plots arranged in rows, columns, or even tables.
Lesson 8: Heatmaps – How to create everything from simple heatmaps to adding different clustering and trees, partitions, and labels on the sides.
下載方式
本公開課程的所有的視訊,程式碼,測試資料,都是可以獲取的。videos, scripts, and example data.
雖然作者是以打賞的模式公開的,但是我看了看付款介面,不支援支付寶和微信,而粉絲群體裡面大部分是學生黨,即使原因湊幾塊錢也沒有美元信用卡,所以我這裡還是幫大家購買了,在後臺回覆繪圖即可獲取,同時希望大家能意思一下,我會收集好大家的捐贈,以美元信用卡形式交給作者。
生信技能樹論壇