1. 程式人生 > >python 和c++實現旋轉矩陣到尤拉角的變換

python 和c++實現旋轉矩陣到尤拉角的變換

在攝影測量學科中,國際攝影測量遵循OPK系統,即是xyz轉角系統,而工業中往往使用zyx轉角系統。 旋轉矩陣的意義:描述相對地面的旋轉情況,yaw-pitch-roll對應zyx對應k,p,w

#include <iostream>
#include<stdlib.h>
#include<eigen3/Eigen/Core>
#include<eigen3/Eigen/Dense>
#include<stdlib.h>
using namespace std;
Eigen::Matrix3d rotationVectorToMatrix(Eigen::Vector3d theta)
{
    Eigen::Matrix3d R_x=Eigen::AngleAxisd(theta(0),Eigen::Vector3d(1,0,0)).toRotationMatrix();
    Eigen::Matrix3d R_y=Eigen::AngleAxisd(theta(1),Eigen::Vector3d(0,1,0)).toRotationMatrix();
    Eigen::Matrix3d R_z=Eigen::AngleAxisd(theta(2),Eigen::Vector3d(0,0,1)).toRotationMatrix();
    return R_z*R_y*R_x;

}
bool isRotationMatirx(Eigen::Matrix3d R)
{
    int err=1e-6;//判斷R是否奇異
    Eigen::Matrix3d shouldIdenity;
    shouldIdenity=R*R.transpose();
    Eigen::Matrix3d I=Eigen::Matrix3d::Identity();
    return (shouldIdenity-I).norm()<err?true:false;
}

int main(int argc, char *argv[])
{
    Eigen::Matrix3d R;
    Eigen::Vector3d theta(rand() % 360 - 180.0, rand() % 360 - 180.0, rand() % 360 - 180.0);
    theta=theta*M_PI/180;
    cout<<"旋轉向量是:\n"<<theta.transpose()<<endl;
    R=rotationVectorToMatrix(theta);
    cout<<"旋轉矩陣是:\n"<<R<<endl;
    if(! isRotationMatirx(R)){
      cout<<"旋轉矩陣--->尤拉角\n"<<R.eulerAngles(2,1,0).transpose()<<endl;//z-y-x順序,與theta順序是x,y,z
    }
    else{
        assert(isRotationMatirx(R));
    }

    return 0;
}

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import cv2
import numpy as np
import math
import random

def isRotationMatrix(R) :
    Rt = np.transpose(R)
    shouldBeIdentity = np.dot(Rt, R)
    I = np.identity(3, dtype = R.dtype)
    n = np.linalg.norm(I - shouldBeIdentity)
    return n < 1e-6

def
rotationMatrixToEulerAngles(R) : assert(isRotationMatrix(R)) sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0]) singular = sy < 1e-6 if not singular : x = math.atan2(R[2,1] , R[2,2]) y = math.atan2(-R[2,0], sy) z = math.atan2(R[1,0], R[0,0]) else : x =
math.atan2(-R[1,2], R[1,1]) y = math.atan2(-R[2,0], sy) z = 0 return np.array([x, y, z]) def eulerAnglesToRotationMatrix(theta) : R_x = np.array([[1, 0, 0 ], [0, math.cos(theta[0]), -math.sin(theta[0]) ], [0, math.sin(theta[0]), math.cos(theta[0]) ] ]) R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1]) ], [0, 1, 0 ], [-math.sin(theta[1]), 0, math.cos(theta[1]) ] ]) R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0], [math.sin(theta[2]), math.cos(theta[2]), 0], [0, 0, 1] ]) R = np.dot(R_z, np.dot( R_y, R_x )) return R if __name__ == '__main__' : e = np.random.rand(3) * math.pi * 2 - math.pi R = eulerAnglesToRotationMatrix(e) e1 = rotationMatrixToEulerAngles(R) R1 = eulerAnglesToRotationMatrix(e1) print ("\nInput Euler angles :\n{0}".format(e)) print ("\nR :\n{0}".format(R)) print ("\nOutput Euler angles :\n{0}".format(e1)) print ("\nR1 :\n{0}".format(R1))