python 和c++實現旋轉矩陣到尤拉角的變換
阿新 • • 發佈:2018-12-18
在攝影測量學科中,國際攝影測量遵循OPK系統,即是xyz轉角系統,而工業中往往使用zyx轉角系統。 旋轉矩陣的意義:描述相對地面的旋轉情況,yaw-pitch-roll對應zyx對應k,p,w
#include <iostream> #include<stdlib.h> #include<eigen3/Eigen/Core> #include<eigen3/Eigen/Dense> #include<stdlib.h> using namespace std; Eigen::Matrix3d rotationVectorToMatrix(Eigen::Vector3d theta) { Eigen::Matrix3d R_x=Eigen::AngleAxisd(theta(0),Eigen::Vector3d(1,0,0)).toRotationMatrix(); Eigen::Matrix3d R_y=Eigen::AngleAxisd(theta(1),Eigen::Vector3d(0,1,0)).toRotationMatrix(); Eigen::Matrix3d R_z=Eigen::AngleAxisd(theta(2),Eigen::Vector3d(0,0,1)).toRotationMatrix(); return R_z*R_y*R_x; } bool isRotationMatirx(Eigen::Matrix3d R) { int err=1e-6;//判斷R是否奇異 Eigen::Matrix3d shouldIdenity; shouldIdenity=R*R.transpose(); Eigen::Matrix3d I=Eigen::Matrix3d::Identity(); return (shouldIdenity-I).norm()<err?true:false; } int main(int argc, char *argv[]) { Eigen::Matrix3d R; Eigen::Vector3d theta(rand() % 360 - 180.0, rand() % 360 - 180.0, rand() % 360 - 180.0); theta=theta*M_PI/180; cout<<"旋轉向量是:\n"<<theta.transpose()<<endl; R=rotationVectorToMatrix(theta); cout<<"旋轉矩陣是:\n"<<R<<endl; if(! isRotationMatirx(R)){ cout<<"旋轉矩陣--->尤拉角\n"<<R.eulerAngles(2,1,0).transpose()<<endl;//z-y-x順序,與theta順序是x,y,z } else{ assert(isRotationMatirx(R)); } return 0; }
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import math
import random
def isRotationMatrix(R) :
Rt = np.transpose(R)
shouldBeIdentity = np.dot(Rt, R)
I = np.identity(3, dtype = R.dtype)
n = np.linalg.norm(I - shouldBeIdentity)
return n < 1e-6
def rotationMatrixToEulerAngles(R) :
assert(isRotationMatrix(R))
sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0])
singular = sy < 1e-6
if not singular :
x = math.atan2(R[2,1] , R[2,2])
y = math.atan2(-R[2,0], sy)
z = math.atan2(R[1,0], R[0,0])
else :
x = math.atan2(-R[1,2], R[1,1])
y = math.atan2(-R[2,0], sy)
z = 0
return np.array([x, y, z])
def eulerAnglesToRotationMatrix(theta) :
R_x = np.array([[1, 0, 0 ],
[0, math.cos(theta[0]), -math.sin(theta[0]) ],
[0, math.sin(theta[0]), math.cos(theta[0]) ]
])
R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1]) ],
[0, 1, 0 ],
[-math.sin(theta[1]), 0, math.cos(theta[1]) ]
])
R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0],
[math.sin(theta[2]), math.cos(theta[2]), 0],
[0, 0, 1]
])
R = np.dot(R_z, np.dot( R_y, R_x ))
return R
if __name__ == '__main__' :
e = np.random.rand(3) * math.pi * 2 - math.pi
R = eulerAnglesToRotationMatrix(e)
e1 = rotationMatrixToEulerAngles(R)
R1 = eulerAnglesToRotationMatrix(e1)
print ("\nInput Euler angles :\n{0}".format(e))
print ("\nR :\n{0}".format(R))
print ("\nOutput Euler angles :\n{0}".format(e1))
print ("\nR1 :\n{0}".format(R1))