tensorflow框架.ckpt .pb模型節點tensor_name列印及ckpt模型轉.pb模型
阿新 • • 發佈:2018-12-18
轉換模型首先要知道的是從哪個節點輸出,如果沒有原始碼是很難清楚節點資訊。
獲取ckpt模型的節點名稱
import os
from tensorflow.python import pywrap_tensorflow
checkpoint_path = os.path.join('./ade20k', "model.ckpt-27150")
reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map = reader.get_variable_to_shape_map()
for key in var_to_shape_map:
print("tensor_name: ", key)
# print(reader.get_tensor(key)) #相應的值
獲取pb模型的節點名稱
import tensorflow as tf
import os
model_dir = './'
model_name = 'model.pb'
def create_graph():
with tf.gfile.FastGFile(os.path.join(
model_dir, model_name), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='' )
create_graph()
tensor_name_list = [tensor.name for tensor in tf.get_default_graph().as_graph_def().node]
for tensor_name in tensor_name_list:
print(tensor_name,'\n')
ckpt轉換為pb模型
from tensorflow.python.tools import inspect_checkpoint as chkp
import tensorflow as tf
saver = tf.train.import _meta_graph("./ade20k/model.ckpt-27150.meta", clear_devices=True)
#【敲黑板!】這裡就是填寫輸出節點名稱惹
output_nodes = ["xxx"]
with tf.Session(graph=tf.get_default_graph()) as sess:
input_graph_def = sess.graph.as_graph_def()
saver.restore(sess, "./ade20k/model.ckpt-27150")
output_graph_def = tf.graph_util.convert_variables_to_constants(sess,
input_graph_def,
output_nodes)
with open("frozen_model.pb", "wb") as f:
f.write(output_graph_def.SerializeToString())