1. 程式人生 > >分析開關電源中MOS管的選用方法

分析開關電源中MOS管的選用方法

 

  MOS管最常見的應用可能是電源中的開關元件,此外,它們對電源輸出也大有裨益。伺服器和通訊裝置等應用一般都配置有多個並行電源,以支援N+1冗餘與持續工作(圖1)。各並行電源平均分擔負載,確保系統即使在一個電源出現故障的情況下仍然能夠繼續工作。不過,這種架構還需要一種方法把並行電源的輸出連線在一起,並保證某個電源的故障不會影響到其它的電源。在每個電源的輸出端,有一個功率MOS管可以讓眾電源分擔負載,同時各電源又彼此隔離。起這種作用的MOS管被稱為"ORing"FET,因為它們本質上是以"OR"邏輯來連線多個電源的輸出。

       

  在ORingFET應用中,MOS管的作用是開關器件,但是由於伺服器類應用中電源不間斷工作,這個開關實際上始終處於導通狀態。其開關功能只發揮在啟動和關斷,以及電源出現故障之時。

  相比從事以開關為核心應用的設計人員,ORingFET應用設計人員顯然必需關注MOS管的不同特性。以伺服器為例,在正常工作期間,MOS管只相當於一個導體。因此,ORingFET應用設計人員最關心的是最小傳導損耗。

        

  低RDS(ON)可把BOM及PCB尺寸降至最小,

  一般而言,MOS管製造商採用RDS(ON)引數來定義導通阻抗;對ORingFET應用來說,RDS(ON)也是最重要的器件特性。資料手冊定義RDS(ON)與柵極(或驅動)電壓VGS以及流經開關的電流有關,但對於充分的柵極驅動,RDS(ON)是一個相對靜態引數。

  若設計人員試圖開發尺寸最小、成本最低的電源,低導通阻抗更是加倍的重要。在電源設計中,每個電源常常需要多個ORingMOS管並行工作,需要多個器件來把電流傳送給負載。在許多情況下,設計人員必須並聯MOS管,以有效降低RDS(ON)。

        

  需謹記,在DC電路中,並聯電阻性負載的等效阻抗小於每個負載單獨的阻抗值。比如,兩個並聯的2Ω電阻相當於一個1Ω的電阻。因此,一般來說,一個低RDS(ON)值的MOS管,具備大額定電流,就可以讓設計人員把電源中所用MOS管的數目減至最少。

  除了RDS(ON)之外,在MOS管

的選擇過程中還有幾個MOS管引數也對電源設計人員非常重要。許多情況下,設計人員應該密切關注資料手冊上的安全工作區(SOA)曲線,該曲線同時描述了漏極電流和漏源電壓的關係。基本上,SOA定義了MOSFET能夠安全工作的電源電壓和電流。在ORingFET應用中,首要問題是:在"完全導通狀態"下FET的電流傳送能力。實際上無需SOA曲線也可以獲得漏極電流值。

  若設計是實現熱插拔功能,SOA曲線也許更能發揮作用。在這種情況下,MOS管需要部分導通工作。SOA曲線定義了不同脈衝期間的電流和電壓限值。

         

  注意剛剛提到的額定電流,這也是值得考慮的熱引數,因為始終導通的MOS管很容易發熱。另外,日漸升高的結溫也會導致RDS(ON)的增加。MOS管資料手冊規定了熱阻抗引數,其定義為MOS管封裝的半導體結散熱能力。RθJC的最簡單的定義是結到管殼的熱阻抗。細言之,在實際測量中其代表從器件結(對於一個垂直MOS管,即裸片的上表面附近)到封裝外表面的熱阻抗,在資料手冊中有描述。若採用PowerQFN封裝,管殼定義為這個大漏極片的中心。因此,RθJC定義了裸片與封裝系統的熱效應。RθJA定義了從裸片表面到周圍環境的熱阻抗,而且一般通過一個腳註來標明與PCB設計的關係,包括鍍銅的層數和厚度。

  開關電源中的MOS管

  現在讓我們考慮開關電源應用,以及這種應用如何需要從一個不同的角度來審視資料手冊。從定義上而言,這種應用需要MOS管定期導通和關斷。同時,有數十種拓撲可用於開關電源,這裡考慮一個簡單的例子。DC-DC電源中常用的基本降壓轉換器依賴兩個MOS管來執行開關功能(圖2),這些開關交替在電感裡儲存能量,然後把能量釋放給負載。目前,設計人員常常選擇數百kHz乃至1MHz以上的頻率,因為頻率越高,磁性元件可以更小更輕。

        

  顯然,電源設計相當複雜,而且也沒有一個簡單的公式可用於MOS管的評估。但我們不妨考慮一些關鍵的引數,以及這些引數為什麼至關重要。傳統上,許多電源設計人員都採用一個綜合品質因數(柵極電荷QG×導通阻抗RDS(ON))來評估MOS管或對之進行等級劃分。

  柵極電荷和導通阻抗之所以重要,是因為二者都對電源的效率有直接的影響。對效率有影響的損耗主要分為兩種形式--傳導損耗和開關損耗。